John's Vademecum

Try to learn something about everything, and everything about something -Thomas Huxley “Darwin's bulldog” (1824-1895)

User Tools

Site Tools


public:calculator:guides:41z_module

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

public:calculator:guides:41z_module [13/02/25 07:45 GMT] – [Quick Ref] johnpublic:calculator:guides:41z_module [06/03/25 06:49 GMT] (current) – external edit 127.0.0.1
Line 17: Line 17:
     * The <key>'Σ+'</key> now activates a //complex number// function when it's pressed - for one operation only     * The <key>'Σ+'</key> now activates a //complex number// function when it's pressed - for one operation only
  
 +==== Module ====
  
 +  * {{ :public:calculator:guides:41z_bs_2x2_2_1_.zip |}}
 +
 +
 +==== User Guide ====
 +
 +  * {{ :public:calculator:guides:41z_deluxe_manual_1_.pdf |}}
 ==== ZK?YN (UPDATE 5/8/22)  ==== ==== ZK?YN (UPDATE 5/8/22)  ====
  
Line 86: Line 93:
 === The rest of the guide was written without the use of full-time ZKEYS in mind === === The rest of the guide was written without the use of full-time ZKEYS in mind ===
  
-  * in the forum thread [[https://forum.swissmicros.com/viewtopic.php?f=26&t=4029]] dealing with the bug in the ''deluxe'' version Angel recommended I use the ''ΣZL'' method - so I'll try to stick to this +  * in the  [[https://forum.swissmicros.com/viewtopic.php?f=26&t=4029 | forum thread]] dealing with the factorization bug in the ''deluxe'' version Angel recommended I use the ''ΣZL'' method. He fears that occasionally ''ZKEYS'' might be broken with incorrect/missing ''USER'' assignments - so I'll try to stick to the normal ''ΣZL'' method. 
  
  
Line 104: Line 111:
   * <key>ZCONJ</key> = <key>Z</key> <key>SHIFT</key> <key>CHS</key> (complex conjugate)   * <key>ZCONJ</key> = <key>Z</key> <key>SHIFT</key> <key>CHS</key> (complex conjugate)
   * <key>Z ^ X</key> = <key>Z</key> <key>EEX</key>   * <key>Z ^ X</key> = <key>Z</key> <key>EEX</key>
-  * <key>Z ^ 1/X</key> = <key>Z</key> <key>Z</key> <key>EEX</key> (root(s) of complex number) +  * <key>Z ^ 1/X</key> = <key>Z</key> <key>Z</key> <key>EEX</key> (root(s) of complex number) : see [[#Cubic Roots]] 
-  * <key>ZNXTNRT _</key> = <key>Z</key> <key>Z</key> <key>SHIFT</key> <key>'√x'</key> and enter the root you want : see [[#Cubic Roots of -8]] +    * <key>ZNXTNRT _</key> = <key>Z</key> <key>Z</key> <key>SHIFT</key> <key>'√x'</key> ''NEXT ROOT''  enter the root you want  
-  +  * <key>ZWDOT</key> = <key>Z</key><key>Z</key><key>'.'</key> dot product of 2 vectors/complex numbers 
 +  * <key>ZWCROSS</key> = <key>Z</key><key>Z</key><key>2</key> : **Magnitude** of the Cross Product of 2 vectors/complex numbers (no sign) 
 +  * <key>ZWDET</key> = <key>Z</key><key>Z</key><key>7</key> : Determinant (Cross Product) of 2 vectors/complex numbers, incl. sign/direction
 ===== Basic Operation ===== ===== Basic Operation =====
  
Line 156: Line 165:
  
  
-=== Z-keys method === 
- 
-++++ ZK?YN method | 
- 
-<key>50</key> <key>ENTER</key> <key>13</key> <key>ENTER</key> 
- 
-<key>1/x</key> 
- 
-<key>23</key> <key>ENTER</key> <key>85</key><key>CHS</key> <key>ENTER</key> 
- 
-<key>1/x</key> 
- 
-<key>+</key> 
- 
-<key>1/x</key> 
- 
-Result :  
- 
-''42.72 - j 11.99'' 
- 
-++++ 
  
 ==== convert to Rectangular ⇔ Polar operation ==== ==== convert to Rectangular ⇔ Polar operation ====
Line 203: Line 191:
  
  
-==== Cubic Roots of -8 ====+==== Cubic Roots ==== 
 + 
 +===Rectangular===
  
   * enter complex ''real'' number ''-8 + j 0''   * enter complex ''real'' number ''-8 + j 0''
     * <key>8</key> <key>CHS</key> <key>Z</key> <key>Z</key> <key>RCL</key>     * <key>8</key> <key>CHS</key> <key>Z</key> <key>Z</key> <key>RCL</key>
       * '' -8 + j 0''       * '' -8 + j 0''
-    * enter 3 (''goes into the normal X register'')+    * enter <key>3</key> (''goes into the normal X register'')
     * find the result of ''Z↑1/x''     * find the result of ''Z↑1/x''
       * <key>Z</key><key>Z</key><key>EEX</key>       * <key>Z</key><key>Z</key><key>EEX</key>
Line 214: Line 204:
     * find the next root with the function ''ZNXTNRT''     * find the next root with the function ''ZNXTNRT''
       * <key>Z</key><key>Z</key><key>SHIFT</key><key>'√x'</key>       * <key>Z</key><key>Z</key><key>SHIFT</key><key>'√x'</key>
-      * enter 3 at the ''_'' prompt+      * enter <key>3</key> at the ''_'' prompt
         * ''-2 + j 0''         * ''-2 + j 0''
     * find the next root with the function ''ZNXTNRT''     * find the next root with the function ''ZNXTNRT''
       * <key>Z</key><key>Z</key><key>SHIFT</key><key>'√x'</key>       * <key>Z</key><key>Z</key><key>SHIFT</key><key>'√x'</key>
-      * enter 3 at the ''_'' prompt+      * enter <key>3</key> at the ''_'' prompt
         * ''1 - j 1.732''         * ''1 - j 1.732''
  
Line 227: Line 217:
   * ''1 - j 1.732''   * ''1 - j 1.732''
  
-The same can be done in ''POLAR'' format....+=== Polar ===
  
-* enter complex ''real'' number ''-8 + j 0''+  * enter complex ''real'' number ''-8 + j 0''
     * <key>8</key> <key>CHS</key> <key>Z</key> <key>Z</key> <key>RCL</key>     * <key>8</key> <key>CHS</key> <key>Z</key> <key>Z</key> <key>RCL</key>
       * '' -8 + j 0''       * '' -8 + j 0''
Line 235: Line 225:
         * <key>Z</key><key>Z</key><key>6</key>         * <key>Z</key><key>Z</key><key>6</key>
           * ''8 ∠ 180''           * ''8 ∠ 180''
-    * enter 3 (''goes into the normal X register'')+    * enter <key>3</key> (''goes into the normal X register'')
     * find the result of ''Z↑1/x''     * find the result of ''Z↑1/x''
       * <key>Z</key><key>Z</key><key>EEX</key>       * <key>Z</key><key>Z</key><key>EEX</key>
Line 241: Line 231:
     * find the next root with the function ''ZNXTNRT''     * find the next root with the function ''ZNXTNRT''
       * <key>Z</key><key>Z</key><key>SHIFT</key><key>'√x'</key>       * <key>Z</key><key>Z</key><key>SHIFT</key><key>'√x'</key>
-      * enter 3 at the ''_'' prompt+      * enter <key>3</key> at the ''_'' prompt
         * ''2 ∠ 180''         * ''2 ∠ 180''
     * find the next root with the function ''ZNXTNRT''     * find the next root with the function ''ZNXTNRT''
       * <key>Z</key><key>Z</key><key>SHIFT</key><key>'√x'</key>       * <key>Z</key><key>Z</key><key>SHIFT</key><key>'√x'</key>
-      * enter 3 at the ''_'' prompt+      * enter <key>3</key> at the ''_'' prompt
         * ''2 ∠ -60.000''         * ''2 ∠ -60.000''
  
public/calculator/guides/41z_module.1739432701.txt.gz · Last modified: 06/03/25 06:49 GMT (external edit)