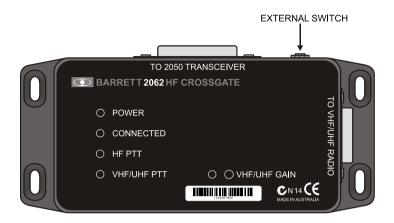


Operating and Installation Manual

BCM20620/12

© Barrett Communications


Head Office:

Barrett Communications Pty Ltd 47 Discovery Drive, Bibra Lake, WA 6163 Australia Tel: +61 8 9434 1700 Fax: +61 8 9418 6757 Email: information@barrettcommunications.com.au

— BARRETT 2062 HF CROSSGATE

Front Panel	3
Function	4
Operation from the HF network	5
Operation from the VHF/UHF network	5
Installing the Barrett 2062 HF Crossgate	6
Setting Vox/Line PTT Control	7
Adjusting VHF/UHF Rx Audio Gain	8
VHF/UHF Mute	9
Speaker Level Audio & VHF/UHF Mute	9
Using the External 2062 Power Switch	10
Typical Connection to VHF/UHF Diagram	11
Additional Control Features	12
Electrical specifications	13
Connectors	15
To 2050 Transceiver (25 pin female "D" connector)	15
To VHF/UHF Radio (9 pin female "D" connector)	16
Example: Connecting to a Motorola GM360	17
Circuit Diagrams and Overlays	18
Parts List	19

Front Panel

POWER - The 2062 is powered on.

CONNECTED - The 2062 is "connected" and to the HF

and VHF/UHF networks are linked.

HF PTT - The HF transceiver is in transmit mode.

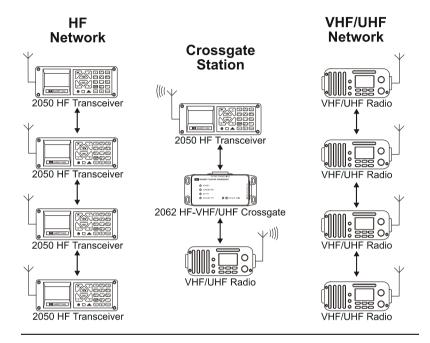
VHF/UHF PTT - The VHF/UHF transceiver is in transmit

mode.

VHF/UHF GAIN - Gain control for the VHF/UHF receive audio

input, with clip indication LED.

TO 2050 TRANSCEIVER - Connection to HF transceiver.


TO VHF/UHF RADIO - Connection to VHF/UHF radio.

EXTERNAL SWITCH - Connection for the external power switch

kit

Function

The Crossgate facilitates voice communication between a Barrett HF radio network and any VHF/UHF radio network as described below:-

The Crossgate station provides a communication link between a Barrett HF Network and a VHF/UHF network.

The Crossgate operates by creating an audio and PTT connection between the HF and VHF/UHF transceivers connected at the Crossgate station. When the Crossgate is "Connected", the Crossgate relays all voice transmissions between the two networks.

The Crossgate provides on air voice annunciation of all control changes.

The Crossgate is designed to work with any VHF/UHF transceiver, however it is recommended that it be used with a transceiver that provides balanced line level audio inputs and outputs, and mute logic output.

NB: The VHF/UHF transceiver must have unfiltered audio output, for correct functionality.

Operation from the HF network

Radio operators on the Barrett HF network connect to the VHF/UHF network by sending a specific Selcall to the Crossgate station, instigating the Crossgate to relay voice communications between the two networks. The network connection can be terminated by an HF network station sending a Selcall "Hang-up" sequence to the Crossgate station.

The Crossgate responds to any of the 4 digit OEM, 4 digit international or 6 digit international Selcall Ids of the Crossgate station's Barrett HF radio.

"Connection" initiation and "connection" termination are announced over both networks. When a "connection" is initiated from the HF network, an additional alarm sound is transmitted over the VHF/UHF network, prior to the annunciation.

Operation from the VHF/UHF network

Operation of the Crossgate from the VHF/UHF network is by transmission of Crossgate DTMF control codes.

Radio operators on the VHF/UHF network can connect to the Barrett HF network by transmitting a DTMF control code for the Selcall ID of any of the radios on the HF network. When the DTMF tone sequence for a 4 or 6 digit Selcall ID is received by the VHF/UHF radio of the Crossgate station, a patch is initiated and the Selcall is sent to the HF network. A "connection" may then be cancelled by transmitting the DTMF code: '99'

When a "connection" is initiated or terminated from the VHF/UHF network, the Crossgate status is enunciated over the VHF/UHF network and the HF radio receiving the Selcall produces a Selcall/ hang-up alarm.

NB: Any DTMF tones received by the Crossgate station's FM transceiver, will be interpreted by the Crossgate as an attempted control code. For this reason, unnecessary DTMF tone transmission is not advised when operating a Crossgate.

During VHF/UHF to HF communication, the Crossgate transmits a beep-after-mute to the VHF/UHF network, to indicate that the Crossgate's HF transceiver is no longer in a mute state. VHF/UHF users must wait for the beep, prior to transmitting a reply.

Installing the Barrett 2062 HF Crossgate

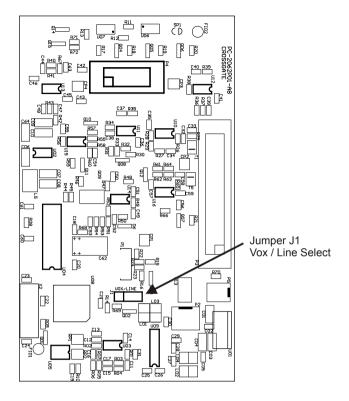
Before connecting the system together ensure that all components to be connected in the system are switched off. For correct installation of the 2050 transceiver please refer to the "Barrett 2050 Operating and Installation Manual" supplied. For correct installation of the VHF/UHF transceiver please refer to the manual supplied with the unit.

Please note that it is recommended that the VHF/UHF antenna and HF antenna are mounted as far apart as possible. This will help keep RF noise out of the VHF/UHF network.

Connect the 25way cable supplied with the 2062 Crossgate from the 2050 transceiver "AUXILIARY CONNECTOR" to the 2062 Crossgate "TO 2050 TRANSCEIVER" connector.

Connect the 9way connector supplied with the 2062 Crossgate from the 2062 Crossgate "TO VHF/UHF RADIO" connector to the VHF/UHF transceiver.

Connect the power leads from the 2022 power supply to the 2050 transceiver.


Connect a suitable antenna to the 2050 transceiver "ANTENNA" socket.

Power on the 2050.

Setup the following menu options for the 2050:

- Use of the transmit timeout function is recommended
- RS-232 Out enabled
- I ine in level 0dBm
- Line out level adjusted to suit VHF/UHF radio's audio input (2062 has unity HF audio pass through gain or 0dB)
- Line audio follows mute
- Tx configuration to local
- Rx configuration to internal audio
- Scan resume time of at least 3 minutes, or set to scan resume OFF
- The 2062 will automatically set the 2050 of the Crossgate station to Audio (syllabic) mute mode
- Antenna Type "Linear Amplifier" Should NOT be selected

Setting Vox/Line PTT Control

The 2062 has an internal jumper which sets the PTT function available from the VHF radio. This jumper tells the 2062 to use a fixed mute line input as the PTT signal from the VHF or use the onboard signal level VOX detection circuit to determine PTT. If no jumper is fitted the default is VOX.

Adjusting VHF/UHF Rx Audio Gain

The VHF/UHF receive audio gain must be set to ensure correct operation of the Crossgate.

- Ensure there is no DTMF or Selcall signalling on the networks during setup
- In order to set the gain correctly, a full strength audio signal should be used from the VHF/UHF radio's audio output. If possible, an unsquelched full noise signal is preferable.
- 3) If using speaker level audio, adjust the VHF/UHF radio volume to a setting which can be left constant during operation. This volume setting must remain unchanged for correct operation.*
- 4) Insert a non-conductive flat head adjustment tool into the front panel gain adjustment hole, and rotate the tool until the tip slots into the screw head slot. The Gain is adjusted via a multi-turn screw type potentiometer.
- 5) If the red clip indication LED is illuminated, rotate the gain adjustment anti-clockwise to decrease the gain. If the LED is not illuminated, rotate clockwise to increase the gain.
- 6) Adjust the gain potentiometer in this fashion, until the red clip indication LED is only occasionally illuminated. This is the optimal gain setting for correct Crossgate operation.*
- Reset the VHF/UHF radio to its operational squelched/quieted mode (see section below).
- Appropriate signal level must continue to be used for reliable DTMF decoding, and audio quality.*

*Note:

The 2062 Crossgate may operate with either line audio, or speaker audio, though it is recommended to operate with balanced line audio. Speaker audio may accidentally be changed on radio volume controls. Appropriate signal levels are necessary for reliable operation. Use of this connection may furthermore be complicated if there is a need for an operator to listen on the Crossgate station's VHF/UHF radio speaker. Additionally, speaker level audio will most likely require trimming to near 0dBm on the VHF/UHF transceiver, and must be unfiltered audio in order to maintain DTMF signal integrity.

VHF/UHF Mute

The 2062 Crossgate has two modes of detecting the mute state of the VHF/UHF radio of the Crossgate station.

- Logic level mute state signal preferred method
- Onboard VOX mute state detection.

When connected, the 2062 uses the mute state of the VHF/UHF radio to determine when to cross key the PTT of the HF radio. A logic signal output from a VHF/UHF radio is the most reliable way to detect this state, though a signal level VOX is also made available on the 2062

If available, the mute signal of the VHF/UHF radio should be connected to the 9 way cable. The 2062 will then preferentially use the mute signal, and ignore the onboard VOX. Jumper J1 on the 2062 PCB should be set correctly to mirror how the system is being used (See "Setting Vox/Line PTT Control" section of the manual).

If a mute signal is not available, the onboard signal level VOX will be used to determine the mute state of the VHF/UHF radio. For correct operation of the signal level VOX, the 2062 must have a correctly quieted (squelched) receive audio output. If there is no mute signal available, and the VHF/UHF receive audio is unquieted (unsquelched), then the VOX will determine that there is a valid VHF/UHF voice signal being received.

If a mute signal is being used from the VHF/UHF radio, then the VHF/UHF receive audio signal does not need to be normally quieted, as the 2062 will only cross key the HF radio's PTT when the mute signal is asserted.

Speaker Level Audio & VHF/UHF Mute

If both a mute state signal, and line audio are not available from the VHF/UHF radio, such that speaker level VHF/UHF receive audio is being used, then special care must be taken to ensure that both correct signal levels are maintained, and also that correct receive audio quieting (squelch) is maintained.

In this case, when connected, the 2062 will cross key the HF radio's PTT whenever the VHF/UHF radio's receive audio exceeds a threshold signal strength. The risk here, is that a volume control of a VHF/UHF radio may be accidentally changed, which may then affect the VOX triggering onboard the 2062.

Use of this connection may furthermore be complicated if there is a need for an operator to listen on the Crossgate station's VHF/UHF radio speaker, as there may be a the need to alter audio levels for listening.

VHF/UHF transceiver speaker audio out is often a low pass filtered output, which has the potential to interfere with correct DTMF decoding, as filters may attenuate the pass band of the Crossgate's DTMF decoder.

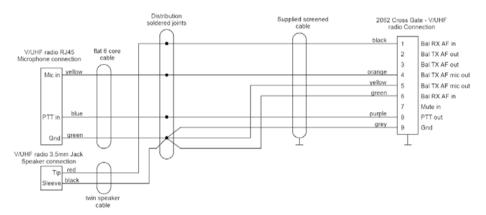
Using the External 2062 Power Switch

The 2062 comes with a power switch kit which allows the operator to power down the Crossgate so that the attached HF and VHF/UHF radios can be used as stand alone transceivers.

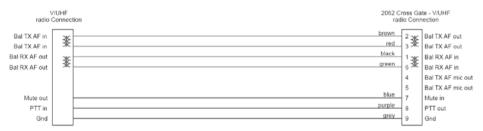
The power switch kit comprises a 3.5mm mono plug, 6 metres of unterminated 2 core cable plus a switch.

The 2 core cable supplied should be run from the 2062 to the required switch position. Once the cable has been installed the supplied switch and plug can be connected to the cable and mounted as needed

The 2062 will remain powered on when connected to the 2050 transceiver if no plug is in the 3.5mm jack. If the mono plug is inserted without the switch fitted the 2062 will power off, once the switch is fitted it can be used to turn the 2062 on or off.


When the 2062 is powered on please allow a few seconds for the unit to initialise and connect to the 2050 transceiver.

Please note that the power switch kit does NOT have to be installed for the 2062 to function correctly.


Typical Connection to VHF/UHF Diagram

The 2062 HF Crossgate does require some technical expertise to install. Please be aware that the plugs and connections of most VHF and UHF radio types are proprietary, and will require specific integration design. The following drawings are intended to assist with the design of the integration, and represent connection of a working system based on front panel microphone/speaker connection or via auxiliary line connection where this is available. The latter is preferable as it will allow the use of the V/UHF radio from the microphone, without upsetting the level settings of the Crossgate

Connection for radio with only Microphone and speaker plug

Connection for radio with line connection plug

Additional Control Features

Control features of the Crossgate station's 2050 are accessible from the VHF/UHF network via the DTMF control codes listed below:

Function	DTMF Code	Notes	
Initiate patch/transmit Selcall	*XXX(XX)##	XXXX(XX) is a 4 digit or 6 digit Selcall ID. Voice transmissions are relayed between networks. VHF/UHF Annunciation: "Selcall XXXX(XX) Sending, Patched In" followed by a connection tone.	
Terminate patch	99	Patch terminates. VHF/UHF Annunciation: "DTMF Hangup, Patched Out"	
Select HF channel	xx	Select channel number of the Crossgate station's HF radio. XX is the HF network channel number, in the range of: 01 to 50 VHF/UHF Annunciation: "Channel XX Selected".	
Interrogate	77	VHF/UHF Annunciation: • "Patched in/out" • "Channel XX." • "Tx on f _{Tx} kHz" ¹ • "Rx on f _{Rx} kHz" ²	
Timer On/Off	88	Turn no activity timer on or off. Annunciate as: "Timeout In" – when timeout timer is on "Timeout Out" – when timeout timer is off	

Notes:

- 1. f_{Rx} is the Crossgate station's HF receive frequency.
- 2. f_{Tx} is the Crossgate station's HF transmission frequency.

Electrical specifications

The Crossgate features audio, PTT, and mute connections to each of the radios of the Crossgate station, and a data connection to the HF radio. The data connection is limited to control commands between the Crossgate and the HF radio and does not facilitate data communications between the two networks.

Electrical connections and specifications are detailed below:

HF Signal Connections	Description
HF ground	0 Volt HF radio ground
+13.8 V	+ 13.8 V Power from HF radio
RS-232 I/O	RS-232 control signals between HF radio and Crossgate
Balanced receive audio in	HF Rx balanced audio in, 600 Ω input impedance, 0dBm recommended
Balanced transmit audio out	HF Tx audio out, 0dBm nominal, into 600 Ω load
HF PTT out	Active low HF radio external PTT keying
HF mute in	Active low HF radio mute state input

VHF Signal Connections	Description
VHF/UHF Rx audio balanced in ¹	VHF/UHF Rx audio, balanced in, 600 Ω input impedance, -26dBm to +4dBm adjustable gain, 0dBm recommended, transformer isolated i
VHF/UHF mute in ²	VHF/UHF radio mute state input, active low, optically isolated ²
VHF/UHF Tx audio balanced line out ¹	VHF/UHF Tx audio, balanced out, 0dBm nominal into 600 Ω load, level adjustable on 2050, transformer isolated $^{\rm 1}$
VHF/UHF Tx audio balanced mic. level out ³	VHF/UHF Tx audio, balanced out, microphone input level ³ , -40dBm nominal, transformer isolated ³
VHF/UHF PTT out	VHF/UHF radio external PTT keying, active low, optically isolated
VHF/UHF ground	VHF/UHF radio 0 volt ground, internally RF isolated in 2062
VHF/UHF Rx audio balanced in ¹	VHF/UHF Rx audio, balanced in, 600 Ω input impedance, -26dBm to +4dBm adjustable gain, 0dBm recommended, transformer isolated ¹

Notes:

- All VHF/UHF audio connections to and from the 2062 are transformer coupled, and are best used with balanced audio outputs and inputs on the VHF/UHF radio of the Crossgate station. If balanced audio is not available, single ended may be used, with one pin of the audio port connected to the VHF/UHF radio ground.
- 2. See explanation of VHF/UHF Mute, above
- Microphone level audio outputs may be used with VHF/UHF radios which
 do not feature true line level Tx audio input, though use of balanced line
 level audio is strongly recommended.

Connectors

To 2050 Transceiver (25 pin female "D" connector)

Pin	Name	Description of function	Level
1	Ground	HF radio ground	0V
2	Tx Data	RS-232 data output	True RS-232
3	Rx Data	RS-232 data input	True RS-232
4			
5			
6			
7	RS-232 Ground	RS-232 Ground	0V
8			
9	PTT Out	HF radio external PTT keying	Active low 0V
10			
11	Bal. Tx Audio Out	Balanced Tx audio output (with pin 24)	0dBm nominal into 600Ω
12	Bal. Rx Audio In	Balanced Rx audio input (with pin 25)	600Ω -6dBm to +9dBm
13	Ground	HF radio ground	0V
14			
15			
16			
17			
18			
19	HF Mute In	Audio mute from the 2050 transceiver	Active low
20			
21			
22			
23	+13.8 V Fused Input	+13.8V Input (+11VDC to +15VDC)	13.8V nominal
24	Bal. Tx Audio Out	Balanced Tx audio output (with pin 11)	0dBm nominal into 600Ω
25	Bal. Rx Audio In	Balanced Rx audio input (with pin 12)	600 Ω -6dBm to +9dBm

To VHF/UHF Radio (9 pin female "D" connector)

Pin	Name	Description of function	Level	Supplied Cable Wire Colour
1	Bal. Rx Audio in	Balanced Rx audio, input, with pin 6	0dBm nominal into 600Ω	Black
2	Bal. Tx audio out	Balanced Tx audio line level output, with pin 3	0dBm nominal into 600Ω	Brown
3	Bal Tx audio out	Balanced Tx audio line level output, with pin 2	0dBm nominal into 600Ω	Red
4	Bal. Tx audio Mic. out	Balanced Tx audio microphone level output, with pin 5	-40dBm nominal into 600Ω	Orange
5	Bal. Tx audio Mic. out	Balanced Tx audio microphone level output, with pin 4	-40dBm nominal into 600Ω	Yellow
6	Bal. Rx Audio in	Balanced Rx audio input, with pin1	0dBm nominal into 600Ω	Green
7	Mute in	VHF/UHF radio mute state logic input	Active low	Blue
8	PTT Out	VHF/UHF radio external PTT keying	Active low	Purple
9	Ground	VHF/UHF radio ground	0 Volt	Grey

Example: Connecting to a Motorola GM360

GM360 to Crossgate Pinouts:

GM360 Accessory Connector Pin Functions	Name	Description of function	Crossgate 9 pin female "D" connector	Description of function
3	Ptt In	GM360 Digital In 1 - External PTT input.	8	VHF/UHF radio external PTT keying
4	Mute Out	GM360 Digital Out 2 - Pin programmed as Carrier Detect output.	7	VHF/UHF radio mute state logic input
5	Flat_TX_Audio	GM360 - Tx Audio input	2	Balanced Tx audio line level output, with pin 3
7	GND	GM360 ground	9	VHF/UHF radio ground
7	GND	GM360 ground	3	Balanced Tx audio line level output, with pin 2
7	GND	GM360 ground	1	Balanced Rx audio, input, with pin 6
11	Receiver Audio	Rx Audio output	6	Balanced Rx audio input, with pin1

Circuit Diagrams and Overlays

(Barrett 2062 HF VHF-UHF Crossgate-schematic.pdf)

(Barrett 2062 HF VHF-UHF Crossgate-Overlays-values.pdf)

(Barrett 2062 HF VHF-UHF Crossgate-Overlays-designators.pdf)

Parts List

PCB P/N: 206	62P01-A8-Parts List - Issue A8	3
Component Designator	Description	Barrett Part Number
C01	Cap 10uF 16v Y5V 1206NB	CP-11710
C02	Cap 100nF 5% 50V 0603	CP-11666
C03	Cap 10uF 16v Y5V 1206NB	CP-11710
C04	Cap 10uF 16v Y5V 1206NB	CP-11710
C05	Cap 100nF 5% 50V 0603	CP-11666
C06	Cap 10uF 16v Y5V 1206NB	CP-11710
C07	Cap 10uF 16v Y5V 1206NB	CP-11710
C08	Cap 10uF 16v Y5V 1206NB	CP-11710
C09	Cap 10uF 16v Y5V 1206NB	CP-11710
C10	Cap 10uF 16v Y5V 1206NB	CP-11710
C11	Cap 100nF 5% 50V 0603	CP-11666
C12	Cap 100nF 5% 50V 0603	CP-11666
C13	Cap 100nF 5% 50V 0603	CP-11666
C14	Cap 1uF 10V +80/-20%	CP-11721
C15	Cap 1uF 10V +80/-20%	CP-11721
C16	Cap 10nF 5%-10% 50V 0603 X7R	CP-11667
C17	Cap 22nF 5% 0603	CP-11726
C18	Cap 100nF 5% 50V 0603	CP-11666
C19	Cap 100nF 5% 50V 0603	CP-11666
C20	Cap 100nF 5% 50V 0603	CP-11666
C21	Cap 100nF 5% 50V 0603	CP-11666
C22	Cap 100nF 5% 50V 0603	CP-11666
C23	Cap 15pF 5% 50V 0603 NPO	CP-11687
C24	Cap 15pF 5% 50V 0603 NPO	CP-11687
C25	Cap 100nF 5% 50V 0603	CP-11666
C26	Cap 100nF 5% 50V 0603	CP-11666
C27	Cap 100nF 5% 50V 0603	CP-11666
C28	Cap 100nF 5% 50V 0603	CP-11666
C29	Cap 100nF 5% 50V 0603	CP-11666
C30	Cap 100pF 5% 50V 0603	CP-11673
C31	Cap 100pF 5% 50V 0603	CP-11673
C32	Cap 1uF 10V +80/-20%	CP-11721

C33	Cap 1uF 10V +80/-20%	CP-11721
C34	Cap 100nF 5% 50V 0603	CP-11666
C35	Cap 100nF 5% 50V 0603	CP-11666
C36	Cap 100nF 5% 50V 0603	CP-11666
C37	Cap 100nF 5% 50V 0603	CP-11666
C38	Cap 1uF 10V +80/-20%	CP-11721
C39	Cap 100nF 5% 50V 0603	CP-11666
C40	Cap 100nF 5% 50V 0603	CP-11666
C41	Cap 1uF 10V +80/-20%	CP-11721
C42	Cap 1uF 10V +80/-20%	CP-11721
C43	Cap 1uF 10V +80/-20%	CP-11721
C44	Cap 330nF 0603 20V	CP-11731
C45	Cap 100nF 5% 50V 0603	CP-11666
C46	Cap 100nF 5% 50V 0603	CP-11666
C47	Cap 10nF 5%-10% 50V 0603 X7R	CP-11667
C48	Cap 5n6 0603	CP-11732
C49	Cap 100nF 5% 50V 0603	CP-11666
C50	Cap 100nF 5% 50V 0603	CP-11666
C51	Cap 100nF 5% 50V 0603	CP-11666
C52	Cap 100nF 5% 50V 0603	CP-11666
C53	Cap 1uF 10V +80/-20%	CP-11721
C54	Cap 100nF 5% 50V 0603	CP-11666
C55	Cap 100nF 5% 50V 0603	CP-11666
C56	Cap 100nF 5% 50V 0603	CP-11666
C57	Cap 100nF 5% 50V 0603	CP-11666
C58	Cap 1uF 10V +80/-20%	CP-11721
C59	Cap 1uF 10V +80/-20%	CP-11721
C60	Cap 22pF 5% 50V 0603 NPO	CP-11675
C61	Cap 22pF 5% 50V 0603 NPO	CP-11675
C62	Cap 100uF Tant 16v	CP-11670
C63	NF	
C64	Cap 10uF 16v Y5V 1206NB	CP-11710
CP1	Cap Net 1nF 50V NPO 5%	CP-11703
CP2	Cap Net 1nF 50V NPO 5%	CP-11703
CP3	Cap Net 1nF 50V NPO 5%	CP-11703
CP4	Cap Net 1nF 50V NPO 5%	CP-11703
D1	Led Green 3mm Round	LE-02913
<u></u>	· · · · · · · · · · · · · · · · · · ·	·

D2	Led Green 3mm Round	LE-02913
D3	Led Green 3mm Round	LE-02913
D4	Led Green 3mm Round	LE-02913
D5	Led Red 3mm Hi/intensity	LE-02915
D6	Di BAV70 SMD	DI-03316
J1	Plug 3 pin	CN-04102
L01	Ind 100uH 1210 10% 10R	IN-03601
L02	Ind 100uH 1210 10% 10R	IN-03601
L03	Ind 100uH 1210 10% 10R	IN-03601
L04	Ind 100uH 1210 10% 10R	IN-03601
L5	Ind 1mH SMD 1812	IN-03585
P1	8W PCB ST Header	CN-00016
P2	Plug 3 pin Polarised	CN-14102
P3	Header 26W Box	CN-04134
P4	Header 10W Box	CN-04138
P5	Plug 2 pin Polarised	CN-14101
Q01	Trans 2N7002 LT-1 Fet	TR-02282
Q02	Trans 2N7002 LT-1 Fet	TR-02282
Q03	Trans 2N7002 LT-1 Fet	TR-02282
Q04	Trans 2N7002 LT-1 Fet	TR-02282
Q05	Trans 2N7002 LT-1 Fet	TR-02282
Q06	Trans 2N7002 LT-1 Fet	TR-02282
Q07	Trans 2N7002 LT-1 Fet	TR-02282
Q08	Trans 2N7002 LT-1 Fet	TR-02282
Q09	Trans BSP17 SOT223	TR-02207
Q10	Trans 2N7002 LT-1 Fet	TR-02282
Q11	Trans 2N7002 LT-1 Fet	TR-02282
Q12	Trans 2N7002 LT-1 Fet	TR-02282
Q13	Trans NDT456 SOT-223 P	TR-02292
Q14	Trans 2N7002 LT-1 Fet	TR-02282
Q15	Trans 2N7002 LT-1 Fet	TR-02282
R01	Res 10k 5% 0.063W 0603	RE-10277
R02	Res 22k 0.063W 5% 0603	RE-10311
R03	Res 10k 5% 0.063W 0603	RE-10277
R04	Res 10k 5% 0.063W 0603	RE-10277
R05	Res 10k 5% 0.063W 0603	RE-10277
R06	Res 100k 5% 0.063W 0603	RE-10291

R07	Res 10k 5% 0.063W 0603	RE-10277
R08	Res 1M 0.063W 5% 0603 NB	RE-10350
R09	Res 5k6 0.063W 5% 0603	RE-10328
R10	Res 5k6 0.063W 5% 0603	RE-10328
R11	Res 100R 5% 0.063W 0603	RE-10283
R12	Res 100R 5% 0.063W 0603	RE-10283
R13	Res 4k7 5% 0.063W 0603	RE-10288
R14	Res 5k6 0.063W 5% 0603	RE-10328
R15	Res 5k6 0.063W 5% 0603	RE-10328
R16	Res 5k6 0.063W 5% 0603	RE-10328
R17	Res 220R 5% 0.063W 0603	RE-10279
R18	Res 220R 5% 0.063W 0603	RE-10279
R19	Res 220R 5% 0.063W 0603	RE-10279
R20	Res 220R 5% 0.063W 0603	RE-10279
R21	Res 220R 5% 0.063W 0603	RE-10279
R22	Res 5k6 0.063W 5% 0603	RE-10328
R23	Res 10k 5% 0.063W 0603	RE-10277
R24	Res 10k 5% 0.063W 0603	RE-10277
R25	Res 680R 0.063W 5% 0603	RE-10329
R26	Res 5k6 0.063W 5% 0603	RE-10328
R27	Res 5k6 0.063W 5% 0603	RE-10328
R28	Res 5k6 0.063W 5% 0603	RE-10328
R29	Res 5k6 0.063W 5% 0603	RE-10328
R30	Res 5k6 0.063W 5% 0603	RE-10328
R31	Res 27k 0.063W 5% 0603	RE-10342
R32	Res 5k6 0.063W 5% 0603	RE-10328
R33	Res 5k6 0.063W 5% 0603	RE-10328
R34	Res 5k6 0.063W 5% 0603	RE-10328
R35	Res 5k6 0.063W 5% 0603	RE-10328
R36	Res 5k6 0.063W 5% 0603	RE-10328
R37	Res 27R 1% 0.063W 0603	RE-00031
R38	Res 5k6 0.063W 5% 0603	RE-10328
R39	Res 5k6 0.063W 5% 0603	RE-10328
R40	Res 1k2 0.063W 0603	RE-00030
R41	Res 1k2 0.063W 0603	RE-00030
R42	Res 10k 5% 0.063W 0603	RE-10277
R43	Res 10k 5% 0.063W 0603	RE-10277

R44	Res 15k 0.063W 5% 0603	RE-10307
R45	Res 5k6 0.063W 5% 0603	RE-10328
R46	Res 1k 5% 0.063W 0603 NB	RE-10287
R47	Res 10R 5% 0.063W 0603	RE-10278
R48	Res 4k7 5% 0.063W 0603	RE-10288
R49	Res 15k 0.063W 5% 0603	RE-10307
R50	Res 47k 0.063W 5% 0603	RE-10326
R51	Res 150k 5% 0.063W 0603	RE-10367
R52	Res 15k 0.063W 5% 0603	RE-10307
R53	Res 5k6 0.063W 5% 0603	RE-10328
R54	Res 2M2 0.063W 5% 0603	RE-10314
R55	Res 15k 0.063W 5% 0603	RE-10307
R56	Res 3k3 0.063W 5% 0603	RE-10323
R57	Res 5k6 0.063W 5% 0603	RE-10328
R58	Res 56k 0.063W 5% 0603	RE-10327
R59	Res 6k8 0.063W 5% 0603	RE-10332
R60	Res 5k6 0.063W 5% 0603	RE-10328
R61	Res 5k6 0.063W 5% 0603	RE-10328
R62	Res 5k6 0.063W 5% 0603	RE-10328
R63	Res 5k6 0.063W 5% 0603	RE-10328
R64	Res 27k 0.063W 5% 0603	RE-10342
R65	Res 5k6 0.063W 5% 0603	RE-10328
R66	Res 5k6 0.063W 5% 0603	RE-10328
R67	Res 56R 5% 0.063W 0603	RE-10286
R68	Res 10R 5% 0.063W 0603	RE-10278
R69	Res 10k 5% 0.063W 0603	RE-10277
R70	Res 10k 5% 0.063W 0603	RE-10277
R71	Res 10k 5% 0.063W 0603	RE-10277
R72	Res 10k 5% 0.063W 0603	RE-10277
RP1	Res array 1k5 5% 0.063W 1206	RE-10368
RP2	Res array 3k3 5% 1206 4 pack	RE-10366
SP1	Solder pad	
T1	T/Former NT2520 956DP-1010	TF-30678
T2	T/Form Midcom	TF-05130
T3	T/Form Midcom	TF-05130
T4	T/Form Midcom	TF-05130
T5	T/Former NT2520 956DP-1010	TF-30678

U01	IC LM2940CT 5.0 TO220	IC-02723
U02	IC LM2660M SOIC8	IC-20026
U03	IC OP279GS SO8 Analogue Device	IC-20056
U04	IC MC145436P DIP14 DTMF	IC-00029
U05	IC M25P80 SO8W 8MBit	IC-20040
U06	IC TCMT1100	IC-20032
U07	IC TCMT1100	IC-20032
U08	PIC18F4520-I/PT	IC-00038
U09	IC SP232ACT SMD	IC-02732
U10	IC OP279GS SO8 Analogue Device	IC-20056
U11	IC OP279GS SO8 Analogue Device	IC-20056
U12	IC OP279GS SO8 Analogue Device	IC-20056
U13	IC OP279GS SO8 Analogue Device	IC-20056
U14	IC OP279GS SO8 Analogue Device	IC-20056
U15	IC LM358M SMD	IC-02706
U16	IC OP279GS SO8 Analogue Device	IC-20056
VR1	Pot 10k Multiturn	RE-00029
X1	Crystal 3.58 Mhz lowprofile	CR-07610
X2	Crystal 10Mhz QC49/S SMD	CR-07652