
GMDSS DSC Messages
A look at the composition of DSC messages and the analysis of
received signals

Part One : DSC Messages

The general picture
DSC (Digital Selective Calling) is a method for ships and Coast Stations to initiate
calls for routine traffic messages, to give position reports, to initiate telephone
connections etc. but mainly for Distress Alerts. The signals are transmitted on a
variety of frequencies in the MF/HF and VHF bands. This guide focusses mainly
on MF/HF DSC. The signals are sent using Frequency Shift Keying (170Hz
shift/100 baud) and the centre frequencies used for “Safety” signalling are listed
below.

 2187.5 kHz
 4207.5 kHz
 6312.0 kHz
 8414.5 kHz
 12577.0 kHz
 16804.5 kHz

There are many other frequencies where DSC signals may be found, for example
2177.0 kHz – but these frequencies are less heavily used, and are for routine
calling, rather than for Distress and Urgency. The majority of Coast Stations
around the world do not monitor the secondary DSC channels, and as a result
most activity is to be found on the standard GMDSS channels.

There is a requirement under GMDSS for all vessels to do a live over-the-air test
of their DSC systems, on a weekly basis, and preferably by a test call with a
Coast Station. As a result the majority of signals heard on the air are test calls,
and their resulting acknowledgements. This at least gives ample sources of
signals for us to monitor.

Stations (Ship, Coast etc.) identify themselves in DSC by use of their allocated
MMSI number.

The MMSI – Maritime Mobile Service Identity
This is a 9-figure numerical code, issued to ships, Coast Stations and various Aids
to Navigation etc. The MMSI uniquely identifies the station, and also identifies
the Country of registration, as well as the type of station. The country is
identified by a three digit code – the [MID] (Maritime Identification Digits).

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 1

The MMSI is made up as follows

 Coast Stations : 00MIDXXXX – two leading zeros, three digits of the
“MID” and four digits to make up a unique 9-digit MMSI

 Ship Stations: MIDXXXXXX – Three digit “MID” followed by six digits to
make up the unique 9-digit MMSI

 Groups of Ships: 0MIDXXXXX – One leading zero, three digit “MID”
and 5 figures to make up the unique 9-digit MMSI.

 Aids to Navigation : 99MIDXXXX
 Craft associated with a parent ship: 98MIDXXXX
 Aircraft using MMSI for Search & Rescue: 111MIDXXX (fixed wing), or

111MID5XX (helicopters)

The “MID” identifies the country, and a selection of examples is below

 [232] [233] [234] [235] : United Kingdom
 [219] [220] : Denmark
 [338] [366] : USA

Example MMSIs
 002320017 : This is Coast Station (two leading zeros), from the UK (MID =
232). The MMSI belongs to Milford Haven Coastguard.

636014168 : This is a Ship (no leading zeros/99/111). Liberian registered (MID =
636). The MMSI belongs to the “CMA CGM Opal” a Liberian Container Ship.

It is because of the structure of MMSIs that software such as YaDD and
DSCDecoder are able to indicate whether a MMSI received belongs to a Coast
Station or a vessel, and the country of origin of the MMSI – even without
necessarily knowing anymore about the station.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 2

DSC messages

The information transmitted in a DSC message includes

 The Sender’s MMSI number
 The addressee – All Ships, Stations within a specific Geographical Area or

an individual station’s MMSI
 The Format of the message – Geographical area, Distress, All Ships,

Individual Call etc.
 The Category of the message – Routine, Safety, Urgency or Distress
 “Telecommands” – additional information for the recipient
 Data – a frequency/channel for communications, current position, nature

of Distress etc.
 End of Sequence – does the message require an acknowledgement from

the addressee, is the message an Acknowledgement or is no further action
required from receiving stations?

 A checksum for determining if the message has been received without
errors.

The general format of a DSC Message

Dotti
ng

Patte
rn

DX/RX
Phasin

g
Seque

nce

A
Format

Specifier

2
identical
Characte

rs

B
Called
Party

Address

5
Characte

rs

C
Catego

ry

1
Charac

ter

D
Self-

Identity
5

Charact
ers

E
TC1
TC2

2
Charact

ers

F
Freq
Info

3
Charact

ers

G
Freq
Info

3
Charact

ers

H
End of

Sequence
3 Identical

DX plus 1 RX
Character

I
Error
Check

1
Character

Symbols
Each piece of a DSC message is allocated a three-digit “Symbol” value. This is a
number between 000 and 127. These “DSC Symbols” are the heart of the
protocol, and are the means of conveying many different types of message. The
different parts of the message (Addresses, Message Format, Category, Data etc.)
are coded into specific symbol values – always between 000 and 127. We’ll look
at how each part of a message is coded into symbols next.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 3

Addresses – MMSI numbers
The 9-digit MMSI number is converted to FIVE DSC Symbols as follows

MMSI 002320017

Split into five segments 00 23 20 01 7

Add “padding zeros” to form five 3-digit symbols 000 023 020 001 070

Another example

MMSI 636014168

Split into five segments 63 60 14 16 8

Add “padding zeros” to form five 3-digit symbols 063 060 014 016 080

We’ll see how the MMSI, in DSC symbol form, is incorporated into a message
later. The important thing here is to see that everything in a DSC message is
carried in 3-digit symbols, with a value between 0 and 127.

Now we’ll look at the component parts of a DSC message.

Format
The Format defines whether a message is a “Selective Call to an individual
station”, an “All ships call”, a “Geographical area call” etc. Each “Format” is
given a specific symbol value.

Format Values

Format Meaning
102 Geographical Area
112 Distress
114 Ships having common Interest
116 All Ships
120 Selective Call to an Individual

Station
123 Individual Station semi-

automatic/automatic

The receiver looks at the symbol which carries the “Format” to determine what
type of message is being sent, and then knows how to interpret the following
symbols correctly.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 4

Category
Messages can have one of four “Category” values which show the importance of
the message. Each different Category is allocated a specific number.

Category Values

Category Meaning
100 Routine
108 Safety
110 Urgency
112 Distress

Telecommands
Messages also contain “Telecommand” values – there are two telecommand
words in a message “Telecommand One” and “Telecommand Two” giving a
wide scope for signalling to the receiver what the sender would like to happen
next. Many are redundant, or rarely ever used, but the full lists are below.

Telecommand One (TC1) Values

Telecommand
One

Meaning

100 F3E/G3E All Modes TP
101 F3E/G3E duplex TP
102 Polling
104 Unable to comply
105 End of Call
106 Data
109 J3E TP
110 Distress Acknowledgement
112 Distress Relay
113 F1B/J2B TTY-FEC
115 F1B/J2B TTY-ARQ
118 Test
121 Ship Position update
126 No information

These Telecommands will inform the receiver that for instance, with TC1 = 109,
that the sender wishes to continue subsequent communications in J3E Telephony,
i.e. SSB voice.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 5

Some DSC messages will use the Second Telecommand in addition, although
that’s not often seen

Telecommand Two (TC2) Values

Telecommand
Two

Meaning

100 No reason Given
101 Congestion at maritime switching centre
102 Busy
103 Queue Indication
104 Station barred
105 No operator available
106 Operator temporarily unavailable
107 Equipment disabled
108 Unable to use proposed channel
109 Unable to use proposed mode
110 Ships and aircraft of states not parties to an armed

conflict
111 Medical Transports
112 Pay-phone/public call office
113 Facsimile/data
126 No information

Telecommand Two is generally associated with using DSC to initiate ship to shore
“public correspondence” calls, rather than in its use as a safety signalling
system, and these TC2 symbols are rarely seen.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 6

The End of Sequence symbol
This is an important part of a message, and tells the recipient whether the
sender wants a response or not.

There are three possible values for the End Of Sequence (EOS) symbol.

If a message requires the receiver to send an “acknowledgement of receipt” then
the transmitted EOS symbol is “RQ” with a value of 117. This is displayed in
YaDD and DSCDecoder as “REQ”. The sender REQuires an acknowledgement.

If a message is sent in reply to such a “REQ” message it will have an EOS of
“BQ”, with a value of 122. This is displayed in YaDD and DSCDecoder as “ACK”.
The message is sent in ACKnowledgement.

The vast majority of MF/HF DSC messages are TEST calls, and the initial TEST
message will have an EOS of 117 – a REQ. The replying message, usually from a
Coast Station, containing the TEST acknowledgement, will have an EOS of 122 –
an ACK.

Some messages are sent without the need for anyone to reply in
acknowledgement. Messages such as “All Ships” or “Geographical Area Call”
messages – perhaps advertising an impending Gale Warning announcement – will
not require any further acknowledgements. These messages have an EOS of
127. This is shown simply as “EOS”.

End Of Sequence Values

End of
Sequence

Meaning

117 Ack RQ (REQ)
122 Ack BQ (ACK)
127 EOS

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 7

Building a message – a worked example.

The general format of a DSC Message

Dotti
ng

Patte
rn

DX/RX
Phasin

g
Seque

nce

A
Format

Specifier

2
identical
Characte

rs

B
Called
Party

Address

5
Characte

rs

C
Catego

ry

1
Charac

ter

D
Self-

Identity
5

Charact
ers

E
TC1
TC2

2
Charact

ers

F
Freq
Info

3
Charact

ers

G
Freq
Info

3
Charact

ers

H
End of

Sequence
3 Identical

DX plus 1 RX
Character

I
Error
Check

1
Character

An “Individual, Safety, Test” Message from a vessel
We’ll use the chart above to build a message, taking the required symbol values
from the previous tables.

The scenario is that a vessel wants to send a Test Message to a Coast Station. He
wants the recipient to respond with acknowledgement, but doesn’t have any
requirement for further communications, and has no position information to pass
on.

A Format : Individual Stations Call 120

C Category : Safety 108

E Telecommand One: Test 118

E Telecommand Two : No info 126

H EOS : REQ (RQ) 117

D Sender’s MMSI : 235448000 (M.V Hrossey – callsign
VSTY6)

B Destination MMSI : 002320001 (Shetland Coastguard)

We can now slot these values into the correct places to build the message.

The 9-digit MMSIs are split across 5 DSC symbols with “padding zeros” to form 3-
figure symbols

The “To MMSI” of 002320001 encodes as: 000 023 020 000 010

 The “From MMSI” of 235448000 encodes as: 023 054 048 000 000

The basic message is now:

 A B B B B B C D D D D D E E

120 000 023 020 000 010 108 023 054 048 000 000 118 126

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 8

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 9

We then add 6 extra symbols, which could in other circumstances be used to
carry lat/long or frequency information. In this message we don’t need to convey
any information, so we use “126” (No Info).

We also add the EOS of 117

120 000 023 020 000 010 108 023 054 048 000 000 118 126 126 126 126
126 126 126 117

This is the basic message, using twenty-one DSC symbols.

There’s one important symbol missing.

The Error Check Character
To allow the receiver to have confidence that the message had arrived without
errors the transmitting station adds an Error Check Character (ECC), which is a
calculated value using the numerical values of the symbols in the rest of the
message. The receiver can than perform the same calculation, using the symbols
it receives, and compare the result with the ECC received in the message. If they
agree then there’s a strong probability that no errors have occurred, and that the
message contents are valid.

The ECC is calculated using the XOR logical operator.

A DSC message contains various symbols, each with a specific meaning, and a
numerical value between 0 and 127. The symbols therefore can be represented
as 7-bit binary numbers.

Decimal 0 = Binary 0000000

Decimal 127 = Binary 1111111

Binary numbers can be manipulated with logical operators (AND, NOR, OR, XOR
etc.) and the ECC calculation in DSC is done using the XOR (Exclusive OR)
operator.

The truth table for the XOR operator

A B XO
R

0 0 0
1 0 1
0 1 1
1 1 0

The ECC is calculated by finding the result of successively XORing each symbol
in turn.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 10

For a simple example suppose we want to find the result of “102 xor 99”

Convert 102 to binary 1100110

Convert 99 to binary 1100011

Look at each bit-position in turn and use the XOR truth table to decide on the
XOR value

1 1 0 0 1 1 0

1 1 0 0 0 1 1

= = = = = = =

0 0 0 0 1 0 1

The XOR result is binary 0000101 which is decimal 5

How XOR detects errors
In our example above, we have two data symbols (102 and 99) and an ECC
symbol (5).

If one of those symbols is decoded with an error, how does the XOR function
detect it?

The “message” is transmitted as 102 099 005 and received as 103 099 005.

Convert 103 to binary 1100111

Convert 99 to binary 1100011

Look at each bit-position in turn and use the XOR truth table to decide on the
XOR value

1 1 0 0 1 1 1

1 1 0 0 0 1 1

= = = = = = =

0 0 0 0 1 0 0

The XOR result is binary 0000100 which is decimal 4

The cECC (calculated ECC) of 4 no longer matches the received ECC of 5.There’s
an error, somewhere.

Suppose there are TWO errors
 Imagine that we received 101 099 004

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 11

Convert 101 to binary 1100101

Convert 99 to binary 1100011

Look at each bit-position in turn and use the XOR truth table to decide on the
XOR value

1 1 0 0 1 0 1

1 1 0 0 0 1 1

= = = = = = =

0 0 0 0 1 1 0

The XOR result is binary 0000110 which is decimal 6

Our message 101 099 004 must be corrupt – the cECC is 6 but the received ECC
is 4. The XOR has detected errors – even when there are more than one, and
when one is in the ECC symbol.

Fly in the ointment - aside
Imagine that we received 103 098 005

There are two errors compared to our genuine 102 099 005

Convert 103 to binary 1100111

Convert 98 to binary 1100010

Look at each bit-position in turn and use the XOR truth table to decide on the
XOR value

1 1 0 0 1 1 1

1 1 0 0 0 1 0

= = = = = = =

0 0 0 0 1 0 1

The XOR result is binary 0000101 which is decimal 5

The cECC matches the Received ECC – but there are two errors! DSC is not
infallible, but this situation is very unlikely in a real message, where there are
20 or more symbols. It is very unlikely that a specific combination of errors will
still yield a correct ECC comparison, with such a large number of symbols
involved in the calculation.

In general, for the ECC to match correctly there must be no “symbols in
error”.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 12

For a real message we need to do the XOR operation on each symbol in turn, one
after the other, until we’ve XORed all the symbols, and we have an overall value
for the ECC.

Back to the fray
We are creating a DSC message for transmission, so calculate the true ECC value
for the message.

In our DSC Message we could do the calculation symbol by symbol as above,
convert each symbol to binary, carry out the XOR on each bit-position, use the
result to XOR with the next DSC symbol expressed in binary…. until we’ve dealt
with all the symbols in the message, then convert back to decimal.

Method 1
The long-handed way to calculate this is by writing the symbols in binary and
then counting the number of “ones” in each column – an odd number of ones
gives a result of “1” and even number of ones gives a result of “0” (“all zeros”
count as “even”)

120 = 1 1 1 1 0 0 0

000 = 0 0 0 0 0 0 0

023 = 0 0 1 0 1 1 1

020 = 0 0 1 0 1 0 0

000 = 0 0 0 0 0 0 0

010 = 0 0 0 1 0 1 0

108 = 1 1 0 1 1 0 0

023 = 0 0 1 0 1 1 1

054 = 0 1 1 0 1 1 0

048 = 0 1 1 0 0 0 0

000 = 0 0 0 0 0 0 0

000 = 0 0 0 0 0 0 0

118 = 1 1 1 0 1 1 0

126 = 1 1 1 1 1 1 0

126 = 1 1 1 1 1 1 0

126 = 1 1 1 1 1 1 0

126 = 1 1 1 1 1 1 0

126 = 1 1 1 1 1 1 0

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 13

126 = 1 1 1 1 1 1 0

126 = 1 1 1 1 1 1 0

117 = 1 1 1 0 1 0 1

ECC = 1 1 1 0 0 0 1 = decimal 113

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 14

Method 2
The quick method for calculating the ECC is to use a calculator that understands
binary and logical operators. Not all calculators can do it, but some can, and
some calculator Apps for iPhone/iPad and Android can too. I use the free Android
app “Mobi Calculator”. An iPad app that supports XOR calculation is
“TouchCalc”.

120 XOR 000 = 120

120 XOR 023 = 111

111 XOR 020 = 123

123 XOR 000 = 123

123 XOR 010 = 113

113 XOR 108 = 029

029 XOR 023 = 010

010 XOR 054 = 060

060 XOR 048 = 012

012 XOR 000 = 012

012 XOR 000 = 012

012 XOR 118 = 122

122 XOR 126 = 004

004 XOR 126 = 122

122 XOR 126 = 004

004 XOR 126 = 122

122 XOR 126 = 004

004 XOR 126 = 122

122 XOR 126 = 004

004 XOR 117 = 113

The ECC for our message is 113 (in decimal)

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 15

The message now gets this ECC value (113) added to the end.

The basic “RAW” message
120 000 023 020 000 010 108 023 054 048 000 000 118 126 126 126 126
126 126 126 117 113

The Format and the EOS are important symbols to the overall meaning of a
message, so they are repeated, the Format symbol is repeated at the beginning,
and the EOS symbol is repeated twice at the end.

120 120 000 023 020 000 010 108 023 054 048 000 000 118 126 126 126
126 126 126 126 117 113 117 117

This is the message that is transmitted over the air – after a few more error
prevention techniques are brought into play. Glossing over these, for now….

The receiver, when presented with the sequence of message symbols

120 000 023 020 000 010 108 023 054 048 000 000 118 126 126 126 126
126 126 126 117

will use them to calculate its own version of the ECC, using the same technique
(XORing each symbol in turn) and will compare the result with the ECC symbol
taken from the received message. If they agree then we are confident our
received message matches the one that was transmitted. If they don’t agree
then there’s been an error in decoding one or more symbols – and that of course
includes the ECC symbol itself.

Let’s continue building our message, ready for transmission.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 16

More error detection / prevention

Symbols and Parity and the “10 to 7-bit Parity Test”
We know that the DSC message is composed of “symbols”, numbers between 0
and 127 which carry the information and that any symbol, with a value between
0 and 127, can be represented in binary with seven bits:

Decimal 0 = Binary 0000000

Decimal 127 = Binary 1111111

Each DSC symbol is therefore a 7-bit number. To allow for detection of bit errors
an extra three bits, “the parity bits”, are added to each 7-bit symbol, prior to
transmission. This allows the receiver to perform a “parity check” to determine
that the symbol has (probably) been received correctly.

The parity check is a number between 0 and 7, expressed in 3-bit
binary, and is a count of the number of “zeros” in the original binary 7-
bit DSC symbol.

The Parity Check allows us to determine, to a degree, whether an individual
symbol has been received correctly, even before we’ve got the whole message,
and before we can carry out the overall ECC check.

Let’s look at how we convert a 7-bit DSC Symbol into a 10-bit word with
parity.

Using the message that we’re building:

120 120 000 023 020 000 010 108 023 054 048 000 000 118 126 126 126
126 126 126 126 117 113 117 117

The first symbol 120 in 7-bit binary is:

120 = 1111000

We count the number of “zeros” in the 7-bit symbol. There are THREE.

The parity check bits are therefore the binary for 3 = 011

To make the actual 10-bit word that we want to transmit we reverse the order of
the original 7-bits and then add the new 3-bit parity bits to the end:

Our 10-bit parity protected word is 0001111011

How does the parity check help us?

Passing a Parity Check
We’ll “reverse engineer” the 10-bit word back to our original DSC Symbol.

0001111011

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 17

The last 3 bits represents the number of zeros we expect to find in the first 7-bits
(the real data).

011 in binary = 3 in decimal.

We expect 3 zeros in the remainder of the 7-bits : 0001111 and there are indeed
3 zeros. Our word has “passed the parity test”. We reverse the order 1111000
and convert to decimal = 120.

We now know how to check a 10-bit word for “parity errors” and to re-create the
original DSC Symbol, if the parity check is “good”.

Failing a Parity Check
Suppose we received the 10 bit word 0001011011

Can we check if it’s a valid word?

The parity bits 011 tell us to expect THREE zeros in the main part of the symbol.
There are actually FOUR zeros. The word is corrupt and must be ignored.

Suppose we received 0001111010

Can we check if this one is valid?

The parity bits 010 tell us to expect TWO zeros in the main part of the symbol.
There are actually THREE. The word is corrupt, and also must be ignored.

Passing a Parity Check, even when there is an error
Suppose we received this 10-bit word 1001111010

The parity bits 010 tell us to expect TWO zeros in the main part of the symbol.
There are actually TWO zeros. The word has passed the parity check.

Suppose though that this was originally transmitted as 0001111011 (120)

Comparing the two copies:

1001111010

0001111011

Two bits are different. The received word 1001111010, when converted back to
7-bits, and reversed, becomes 1111001, which is decimal 121.

This is the incorrect value – although it’s “passed the parity test”. Two bits being
swapped can lead to false positives. This is where the overall ECC comes to the
rescue. The false value of 121 for one of the symbols would lead to the overall
ECC check failing, and the knowledge that the message contained errors.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 18

Time Diversity Interleaving : The DX and RX copies

Each 10-bit word is sent twice, to give the receiver two opportunities to get an
accurate version of the DSC symbol. The symbols are sent once in what is called
the “DX” position, and after four other symbols have been transmitted they are
sent again, in the “RX” position. The bit-rate of MF/HF DSC is such that the
intervening four symbols (of 10 bits each) between the DX and RX copies of any
symbol take 400ms – so each symbol is sent twice spread out by 400ms. A burst
of noise, or a fade, of less than this duration won’t wipe out both the DX and RX
copies of any symbol. Even if one copy is missing, as long as the other copy
is intact we can still reconstruct the message. The Parity Check is thus a
valuable tool for deciding whether to discard one or other of the DX or RX
copies.

To illustrate the application of the diversity interleave, we can inspect a real
message, received off-air. The symbols available, before the software de-
interleaves the DX and RX copies are as follows

125 107 125 106 120 105 120 104 037 120 005 120 005 037 ~~~ ~~~ ~~~ ~~~ ~~~
000 037 000 ~~~ 108 ~~~ 037 000 005 000 005 118 000 ~~~ ~~~ ~~~ 118 126 126
126 126 126 126 126 126 126 126 122 126 102 126 122 122

Splitting it up to show the DX and RX positions, and numbering each symbol

dx rx dx rx dx1 rx dx2 rx dx3 rx1 dx4 rx2 dx5
125 107 125 106 120 105 120 104 037 120 005 120 005

rx3 dx6 rx4 dx7 rx5 dx8 rx6 dx9 rx7 dx10 rx8 dx11 rx9
037 ~~~ ~~~ ~~~ ~~~ ~~~ 000 037 000 ~~~ 108 ~~~ 037

dx12 rx10 dx13 rx11 dx14 rx12 dx15 rx13 dx16 rx14 dx17 rx15
000 005 000 005 118 000 ~~~ ~~~ ~~~ 118 126 126

dx18 rx16 dx19 rx17 dx20 rx18 dx21 rx19 dx22 rx20 dx23 rx21
126 126 126 126 126 126 126 126 122 126 102 126

dx24 rx22
122 122

The initial few symbols (125 107 125 106 120 105 120 104) are part of the
“phasing” section, and are used by the receiver to find the start of the message,
and the boundaries between each 10-bit word.

Symbols shown as ~~~ are ones that failed the “parity test” and have therefore
been “lost”. There are TEN such missing symbols, with FOUR of these occurring
in succession.

Surely the message is corrupt and useless?

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 19

If we look for each message symbol in turn, and see where its DX and RX copies
are, we find that the message is actually intact!

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
120 120 037 005 005 000 000 108 037 005 005 000 000 118 126 126 126 126 126

 20 21 22 23 24
126 126 122 102 122

Symbols in RED were received in the “DX” position (the first copy) and those in
BLUE were “recovered” from the “RX” position (the second copy). Overall no
symbols were missed, despite what seemed like a lot of missing data.

 The message decoded correctly

19:30:36> 2187.5: 120 120 037 005 005 000 000 108 037 005 005 000 000 118
126 126 126 126 126 126 126 122 102 122
19:30:36> FORMAT: SELECTIVE CALL
19:30:36> CAT: SAFETY
19:30:36> TO: SHIP 370505000
19:30:36> FROM: SHIP 370505000
19:30:36> TC1: TEST
19:30:36> TC2: NO INFO
19:30:36> FREQ: --
19:30:36> POS: --
19:30:36> EOS: ACK
19:30:36> cECC: 102 OK

The Message – almost ready for transmission
To build the message we’ve taken the following steps

 Create the basic message : 120 000 023 020 000 010 108 023 054 048
000 000 118 126 126 126 126 126 126 126 117

 Calculate the ECC : 113
 Add copies of the Format and EOS characters
 Interleave the DX and RX copies – separated by 4 intervening words

This gets us here:

120 xxx 120 xxx 000 120 023 120 020 000 000 023 010 020 108 000 023
010 054 108 048 023 000 054 000 048 118 000 126 000 126 118 126 126
126 126 126 126 126 126 126 126 117 126 113 126 117 117 117 113

Dotting and Phasing
The two symbols shown as xxx (in the RX position) will be added next. They are
part of the “phasing” sequence sent at the start of a message. The phasing
sequence lets the decoder find the start of the message, and find the 10-bit word
boundaries.

The very start of a message is a “dotting pattern” – a series of alternating 1s and
0s to allow the receiver to synchronize with the bit-rate of the message. The
dotting pattern is generally 200 bits long, except for ACK messages of “Selective

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 20

Calls”, where the dotting pattern is only 20 bits. The longer 200 bit sequence is
to allow scanning receivers to find a transmission while scanning several MF/HF
channels.

After the Dotting Pattern comes a set of symbols called the “phasing sequence”.
The sequence of DX and RX characters is

125 111 125 110 125 109 125 108 125 107 125 106

before the message data itself begins to be transmitted.

The last two phasing symbols (105 and 104) now interleave with the real
message symbols:

120 105 120 104 000 120 023 120 020….. etc.

The receiver takes in the bits one at a time, and looks for the pattern “125 109
125 108” etc. by shifting the bits along one at a time until the phasing pattern is
found. There are several chances to find the phasing symbols. Once any three
symbols from the phasing sequence are detected we will be correctly
“locked” to the word boundaries, and will be able to count off 10 bits at a time,
and treat each 10-bit chunk as a “parity protected word”, for processing. This
involves parity checking, DX/RX de-interleaving, ECC checking, message parsing
etc.

The full time-interleaved message is now (DX and RX)
125 111 125 110 125 109 125 108 125 107 125 106 120 105 120 104 000
120 023 120 020 000 000 023 010 020 108 000 023 010 054 108 048 023
000 054 000 048 118 000 126 000 126 118 126 126 126 126 126 126 126
126 126 126 117 126 113 126 117 117 117 113

The symbols now need to be converted to 10-bit parity protected words and then
we’ll have a stream of 62 words x 10 bits – 620 bits. Add on the 200 bit dotting
pattern we have 820 bits. At 100 bits per second, a DSC message on MF/HF takes
approximately 8 seconds to transmit. Other message formats might be longer or
shorter than this “Test” message.

Modulation and transmission characteristics

DSC on the MF and HF bands is transmitted as a Frequency Shift Keyed (FSK)
signal at 100 baud. The frequency shift is 170Hz and has the emission code F1B
(if direct FSK modulation is used) or J2B if a modulating subcarrier is used in an
SSB transmitter. It is usual for J2B transmission to be done with a modem centre
frequency of 1700Hz, with the tone representing a binary 1 being the lower of
the two transmitted tones. The ITU describes a logical 1 as “Y” and a logical 0 as
“B”.

The tone frequencies generated in the DSC Modem will therefore be

Y (1) = 1615Hz B (0) = 1785Hz

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 21

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 22

Recap - Error detection and methods to improve
reliability
To improve the successful reception of messages, and to provide a means of
detecting errors, DSC uses three methods.

1) Parity checking in each transmitted symbol

2) Repeat transmission of each symbol. They are sent again after four other
characters, so each symbol is sent a second time after 400ms have elapsed,
which means a burst of noise, or interference, must be longer than 400ms before
it can destroy both copies of the same symbol, and we only need one copy to be
received correctly to construct the received message.

3) An overall Check Sum test to detect if any symbols have been received in
error, even if they passed the initial Parity Check.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 23

Part Two : Analysis of received messages

An error free example – A Test Call
Let’s inspect a received message using only the “RAW” symbols after de-
interleaving.

120 120 000 023 020 000 070 108 027 033 018 094 000 118 126 126 126
126 126 126 126 117 090 117 117

This message has no errors or corruptions and will illustrate how to read the
symbols and convert them into a readable message.

Identify the key parts of the message
120 120 000 023 020 000 070 108 027 033 018 094 000 118 126 126 126
126 126 126 126 117 090 117 117

We know that a message is composed of several distinct sections.

Format = 120

Called Station MMSI = 000 023 020 000 070

Category = 108

Calling Station MMSI = 027 033 018 094 000

Telecommands 1 & 2 = 118 126

Message Data (Frequency/Position etc.) = 126 126 126 126 126 126

EOS = 117

ECC = 090

We can convert the MMSI symbols back to the actual 9-digit MMSI:

The “Called Station” is: 000 023 020 000 070 = 002320007

The “Calling Station” is: 027 033 018 094 000 = 273318940

A Format of 120 means “Individual Stations”

The Category of 108 means “Safety”

Telecommand 1 of 118 means “Test”

Telecommand 2 of 126 means “No Information”

There are 6 characters for the “message” and here they are all 126 which again
means “No Information”

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 24

The End of Sequence value of 117 means “REQ” (Acknowledgement is
REQuired)

We have the deciphered meaning of the message
Individual Station Call

To : 002320007

From : 273318940

Safety

Test / No Info

Message : No Information

Acknowledgement Required

This is a simple, very commonly seen, Test message sent from a Ship to a Coast
Station.

YaDD logs the message as
FORMAT: SEL (SEL meaning “Selective Call to an individual station”)

CAT: SAF

TO: COAST,002320007,ENG,Humber Radio

FROM: SHIP,273318940

TC2: NO INFO

FREQ: --

POS: --

EOS: REQ

The “Message” field can hold Frequency or Position information, and since the
transmitted data in this section was “126 126 126 126 126 126” YaDD shows
“FREQ: --“and “POS: --“

Checking the message Error Check Character manually
One final piece of information needs to be dealt with:

ECC = 090

We know how to calculate the ECC from earlier, and YaDD does this itself, and
then compares its calculation with the ECC value from the message. YaDD will
show the result of this calculation and comparison:

cECC: 90 OK

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 25

We take the basic message, removing the duplicated Format and EOS symbols:

120 000 023 020 000 070 108 027 033 018 094 000 118 126 126 126 126
126 126 126 117

Convert each symbol to binary and do the “XOR” routine on each “column” (bit
position).

120 = 1 1 1 1 0 0 0

000 = 0 0 0 0 0 0 0

023 = 0 0 1 0 1 1 1

020 = 0 0 1 0 1 0 0

000 = 0 0 0 0 0 0 0

070 = 1 0 0 0 1 1 0

108 = 1 1 0 1 1 0 0

027 = 0 0 1 1 0 1 1

033 = 0 1 0 0 0 0 1

018 = 0 0 1 0 0 1 0

094 = 1 0 1 1 1 1 0

000 = 0 0 0 0 0 0 0

118 = 1 1 1 0 1 1 0

126 = 1 1 1 1 1 1 0

126 = 1 1 1 1 1 1 0

126 = 1 1 1 1 1 1 0

126 = 1 1 1 1 1 1 0

126 = 1 1 1 1 1 1 0

126 = 1 1 1 1 1 1 0

126 = 1 1 1 1 1 1 0

117 = 1 1 1 0 1 0 1

 = = = = = = =

ECC = 1 0 1 1 0 1 0 = 90

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 26

Our calculated ECC matches the received ECC.

We can agree with YaDD : “cECC = 90 OK”

We’ve taken a sequence of 3-figure numbers and converted them into a
readable DSC message, we know who sent it, where it was intended for,
what type of message it was, and also that we received it with no
errors.

Another error free example – not a “Test” call
120 120 023 076 011 000 000 108 023 076 041 000 000 109 126 004 014
090 004 014 090 117 080 117 117

Identify the key sections

120 120 023 076 011 000 000 108 023 076 041 000 000 109 126 004 014
090 004 014 090 117 080 117 117

Format = 120 “Individual Call”

Called Station MMSI = 023 076 011 000 000 = 237611000

Category = 108 “Safety”

Calling Station MMSI = 023 076 041 000 000 = 237641000

Telecommand 1 = 109 “J3E Telephony”

Telecommand 2 = 126 “No Information”

Message Data = 004 014 090 004 014 090 = 04149.0kHz / 04149.0kHz

EOS = 117 “Acknowledgement REQuired”

ECC = 080

The complete message reads:

Individual Station Call

Safety

To: 237611000

From: 237641000

TC1/2: J3E Telephony / No Info

Freq: 4149.0kHz/4149.0kHz

REQ

This is a message from a ship with MMSI 237641000, addressed to another ship
with MMSI 237611000 requesting that they use SSB Telephony, on 4149kHz. The

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 27

caller wants a DSC ACK to confirm reception and to confirm the choice of
frequency.

What about the ECC?

120 = 1 1 1 1 0 0 0

023 = 0 0 1 0 1 1 1

076 = 1 0 0 1 1 0 0

011 = 0 0 0 1 0 1 1

000 = 0 0 0 0 0 0 0

000 = 0 0 0 0 0 0 0

108 = 1 1 0 1 1 0 0

023 = 0 0 1 0 1 1 1

076 = 1 0 0 1 1 0 0

041 = 0 1 0 1 0 0 1

000 = 0 0 0 0 0 0 0

000 = 0 0 0 0 0 0 0

109 = 1 1 0 1 1 0 1

126 = 1 1 1 1 1 1 0

004 = 0 0 0 0 1 0 0

014 = 0 0 0 1 1 1 0

090 = 1 0 1 1 0 1 0

004 = 0 0 0 0 1 0 0

014 = 0 0 0 1 1 1 0

090 = 1 0 1 1 0 1 0

117 = 1 1 1 0 1 0 1

 = = = = = = =

ECC = 1 0 1 0 0 0 0 = 80

Success! Our cECC is 80, which matches the received ECC – the message has no
detectable errors.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 28

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 29

YaDD logs the message:

FORMAT: SEL

CAT: SAF

TO: SHIP,237611000

FROM: SHIP,237641000

TC1: J3E TP

TC2: NO INFO

FREQ: 04149.0/04149.0KHz

POS: --

EOS: REQ

cECC: 80 OK

The MMSI of the Sender : 237641000 has an MID of 237. This belongs to Greece,
and the vessel is the Knossos Palace. The addressee 237611000 also has an MID
of 237 – also a Greek vessel.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 30

Analyzing “Faulty Messages”

One missing symbol

120 120 035 075 063 000 000 108 063 060 015 004 040 ~~~ 126 126 126 126 126

126 126 117 030 117 117

YaDD Logs the message

FORMAT: SEL

CAT: SAF

TO: SHIP,357563000

FROM: SHIP,636015044

TC1: UNK/ERR

TC2: NO INFO

FREQ: --

POS: --

EOS: REQ

cECC: 104 ERR

The ECC Checksum test has failed , “cECC: 104 ERR” and it’s clear that the
Telecommand 1 is showing as “Unk/Err” (Unknown/Error).

What has happened?

Looking at the raw symbols:

120 120 035 075 063 000 000 108 063 060 015 004 040 ~~~ 126 126 126 126 126

126 126 117 030 117 117

We can see that the Telecommand 1 symbol is “missing”, it’s shown as ~~~,
which means that it failed the parity test – in fact BOTH the DX and RX copies
must have failed the parity test, and we’re left with a hole in our message.

The ECC check failed, because the successive XOR of the symbols can’t possibly
match the correct value, as there’s one number missing from the calculation.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 31

YaDD calculates the ECC to be “104” and the ECC we received in the message is
“030”.

Is the rest of the message ok?

Can we use our knowledge of the structure of DSC messages, and of the ECC
calculation, to find a likely value for the missing Telecommand 1? Can we then
test our substitution with a new ECC calculation?

Guess the missing symbol and test the solution
Looking at the message, there doesn’t appear to be any “Frequency” or
“Position” data within the “Message” portion. All the symbols there are 126 126
126 126 126 126 which mean “No Information”.

The Format appears to be an “Individual Call” with value 120

The Category appears to be “Safety” with value 108

The “End Of Sequence” appears to be a “REQ” with value 117

We’ve seen this type of message before, lots of times. It looks like a standard
DSC TEST call.

The Telecommand 1 value for “Test” is 118.

Let’s substitute the value of 118 for the missing TC1 symbol and recalculate the
ECC.

120 035 075 063 000 000 108 063 060 015 004 040 118 126 126 126 126 126
126 126 117

I get the answer “Binary 0011110 / Decimal 30” from my trusty Android
Calculator app.

This matches the received ECC in the message!

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 32

A repaired message – now error free
We have now shown that one possible version of the message could have been

120 120 035 075 063 000 000 108 063 060 015 004 040 118 126 126 126 126
126 126 126 117 030 117 117

Format : Individual Call

Category : Safety

Called MMSI : 357563000

Calling MMSI : 636015044

Telecommand 1 : TEST

Telecommand 2 : No Info

Freq : no info

Position : no info

EOS : REQ

cECC : 30 OK

If the missing TC1 symbol was the only error, and the correct symbol HAD been
118 (for TEST) then the rest of the message would meet the ECC Checksum Test
and we are happy that the message is complete and genuine.

An ECC Error, but no missing symbols

SYMB: 120 120 035 043 070 000 000 108 000 023 020 020 040 118 126 126
126 126 126 126 126 122 027 122 122

FMT:SEL
CAT:SAF
TO:SHIP,354370000
FR:COAST,002320204,ENG,Snargate Radio Dover
TC1:TEST
TC2:NO INFO
FREQ:--
POS: --
EOS: ACK
ECC: 23 ERR

Yadd thinks the ECC has failed – it calculates 23, but has received an ECC symbol
with value 27.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 33

There don’t seem to be any errors though – none of the symbols have failed the
parity test.

120 035 043 070 000 000 108 000 023 020 020 040 118 126 126
126 126 126 126 126 122

What’s the ECC? YaDD says 23.

My calculator also says 23.

Why does the message seem to have sent the ECC as 027?

This symbol passed the 10/7-bit parity test….

Think of a possible cause of the mismatch in ECC….

“What if the whole message is correct APART from the ECC symbol?”

 In that case YaDD’s (and my) calculated ECC would be correct, the ECC should
be 23

From the message symbols that we think are correct we’ve calculated the ECC as
Decimal 23 = binary 0010111 . Our supposition is that this may also have been
the original “transmitted” ECC.

Has the ECC value been “damaged in transit”?

Let’s build a 10-bit parity-protected word from this 7-bit value.

Reverse the bit-order

1110100

Count the zeros : 3

Work out the parity bits: decimal 3 = binary 011

10-bit parity-protected word is 1110100011

Now we can look at the received ECC symbol : 27. What 10 bit word did YaDD’s
decoder detect, which passed the 10/7-bit parity test, and gave the decoded
value of 27?

Decimal 27 = binary 0011011.

Reverse the bit-order

1101100

count the zeros: 3

Work out the parity bits: decimal 3 = binary 011

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 34

The 10-bit parity-protected word that represents 27: 1101100011

This is the 10-bit word that came out of YaDD’s decoder, and which met the
10/7-bit parity test before being converted to the decimal symbol “027”.

Compare the “received” and “calculated” ECCs:

Received 27 (in error?): 1101100011

Calculated 23 (possibly the true ECC?): 1110100011

There are only two bits different. Is this an easy glitch to imagine?

If the 10-bit character (for the “true” ECC of 23) was transmitted as
1110100011 and bits 3 and 4 got “flipped” due to noise while being decoded,
the result would be 1101100011 which is still a perfectly valid 10-bit parity-
protected word, and when converted back to 7-bits it becomes the decimal
number 27 in our decoded message.

Can we really say that the rest of the message is okay?

 If we accept that only one symbol is faulty, and that the faulty symbol is the ECC
symbol – it is quite easy to accept that we probably do have an accurate decode
of the rest of the message.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 35

Here’s the proof:
The original message we’ve just dissected, received at 13:10:21

2013-11-13 13:10:21> 8414.5: 120 120 035 043 070 000 000 108 000 023
020 020 040 118 126 126 126 126 126 126 126 122 027 122 122

FORMAT: SEL

CAT: SAF

TO: SHIP,354370000

FROM: COAST,002320204,ENG,Snargate Radio Dover

TC1: TEST

TC2: NO INFO

FREQ: --

POS: --

EOS: ACK

cECC: 23 ERR

By a strange co-incidence the sender repeated his transmission one minute later
at 13:11:23

2013-11-13 13:11:23> 8414.5: 120 120 035 043 070 000 000 108 000 023
020 020 040 118 126 126 126 126 126 126 126 122 023 122 122

FORMAT: SEL

CAT: SAF

TO: SHIP,354370000

FROM: COAST,002320204,ENG,Snargate Radio Dover

TC1: TEST

TC2: NO INFO

FREQ: --

POS: --

EOS: ACK

cECC: 23 OK

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 36

The second message is identical – the same ACK sent to the same vessel. This
time YaDD managed to decode the received ECC symbol as 23 and still
calculated (from the rest of the received symbols) a value of 23. The ECCs now
match – and we can assume the first message was okay apart from a falsely
decoded ECC symbol.

One missing symbol – calculating the likely value

08:43:59> 2187.5: 102 102 005 050 001 004 006 108 000 023 020 000

~~~ 109 126 001 092 050 001 092 050 127 023 127 127 

           FORMAT: AREA CALL

              CAT: SAFETY

               TO: 55°N=>04° 001°E=>06°

             FROM: COAST 00232000~, UNID

              TC1: J3E TP

              TC2: NO INFO

             FREQ: 01925.0/01925.0KHz

              POS: --

              EOS: EOS

             cECC: 81 ERROR

In a previous example we had a message that failed the ECC check due to a 
missing symbol – a Telecommand – and we found that we could substitute our 
best guess, and found happily that the ECC check now worked and we declared a
successful decode of the message.

In this next example the problem is much the same – but the missing symbol 
this time is an IMPORTANT  one – it’s the last symbol of the coast station’s MMSI
– the key to identifying the sender of the message. 

Can we “fix” our broken message and claim a “catch”?

YaDD calculates the ECC to be 81 using the symbols it has available:

102 005 050 001 004 006 108 000 023 020 000     109 126 001 092 050 
001 092 050 127

The message contains an ECC symbol of 23.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 37



Using the ECC XOR calculation to find the missing value

If we assume no other errors – and that the received ECC of 23 accurately 
describes the original message, then we can say “if 81 is the XOR value of all the
symbols we have received, and XXX is the value of the missing symbol, then if 
we XOR 81 with the missing value we would HOPE to get an answer of 23, to 
match the ECC we received in the message.”

81 xor XXX = 23

81  is the XOR value of all the symbols except the missing one (which we call 
XXX). 

If we’d been creating the ECC value at the transmitter we’d have XORed all the 
symbols to arrive at 23, but we’ve only been able to XOR most of them and 
arrived at 81.

Let’s write out the XOR calculation:

081 = 1 0 1 0 0 0 1

xxx = a b c d e f g

      = = = = = = = 

023 = 0 0 1 0 1 1 1

Using our knowledge of the XOR truth table can we work out what the values of 
the x in each column would need to be to make the calculation work?

A B XO
R

0 0 0
1 0 1
0 1 1
1 1 0

1 xor a = 0 a must be 1

0 xor b = 0 b must be 0

1 xor c = 1 c must be 0

0 xor d = 0 d must be 0

0 xor e = 1 e must be 1

0 xor f = 1 f must be 1

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 38



1 xor g = 1 g must be 0

Our value for XXX must be binary 1000110 which is decimal 70.

We’ve worked out the missing symbol by doing the longhand XOR, in reverse, on 
the binary values of the symbols. Could we use our calculator app to work it out 
directly?

Aside – manipulating XOR calculations

We want to find the value of XXX in the following formula

81 xor XXX = 23

Can we do some “algebra” using the XOR operator so that we can use a 
calculator instead of writing out all the “ones and noughts”?

We know, from above, that the missing value which satisfies the calculation is 

actually 70

81 xor 70 = 23

081 = 1 0 1 0 0 0 1

070 = 1 0 0 0 1 1 0

      = = = = = = =

023 = 0 0 1 0 1 1 1

What is: 81 xor 23 = ???

081 = 1 0 1 0 0 0 1

023 = 0 0 1 0 1 1 1

      = = = = = = =

070 = 1 0 0 0 1 1 0

So…  81 xor 23 = 70

It turns out that it doesn’t matter which way you do the calculation:

81 xor 70 = 23

81 xor 23 = 70

70 xor 23 = 81

As long as we have two values we can work out the missing one. 

To reiterate what we’ve just done. We knew the ECC received in the message 

was 23 and we knew that our cumulative XOR of the symbols that we knew 

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 39



about was 81, and we needed to find out the value of the single missing symbol.
By XORing 81 with the wanted 23, we calculated that the value of the missing 
symbol had to be 70.

81 xor 23 = 70

We can use this “XORing works in any order” trick to find missing symbols, 
saving us the hassle of writing down the “ones and zeros” – and another example
will come along soon.

So, we now have a complete set of symbols:

102 102 005 050 001 004 006 108 000 023 020 000 070 109 126 001 092
050 001 092 050 127 023 127 127

We know now that cECC is 23 when we make our substitution of 070 for the 

missing MMSI symbol, and that this now matches the received ECC from the 
message. 

So, after all that:  “What is the missing MMSI?”

YaDD reported :  FROM: COAST 00232000~, UNID

We can put our newly calculated 070 in place of the final missing symbol:

000 023 020 000 070

We know how to retrieve an MMSI from the 3-figure DSC symbols:

000 023 020 000 070

The MMSI of the UNID Coast Station is : 002320007

This belongs to Humber Coastguard in the UK. Can we now add Humber to our 
log? After all we received almost all of the message correctly, and by using our 
knowledge of DSC messages, the ECC calculation and how to manipulate 
symbols using the XOR function, we have shown that in all probability we must 
have received:

08:43:59> 2187.5: 102 102 005 050 001 004 006 108 000 023 020 000 
070 109 126 001 092 050 001 092 050 127 023 127 127 

           FORMAT: AREA CALL

              CAT: SAFETY

               TO: 55°N=>04° 001°E=>06°

             FROM: COAST 0023200007,ENG,Humber Radio

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 40



              TC1: J3E TP

              TC2: NO INFO

             FREQ: 01925.0/01925.0KHz

              POS: --

              EOS: EOS

             cECC: 23 OK

Some more compelling information? The DSC message is an “Area Call” 
addressed to vessels in a geographical area . The area being referenced is a box 
with the co-ordinates:

                    55°N 1°E . . . . . 55°N 7°E
.                         .

.                         .   

51°N 1°E . . . . . 51°N 7°E  

This puts us in the southern North Sea, in Humber’s area of responsibility. The 
J3E TP frequency is 1925kHz which is one of Humber’s usual MF frequencies for 
MSI (Maritime Safety Information) broadcasts.

Would we dare to claim a successful reception of Humber Coastguard 
Radio 002320007 ?
This is a question for each of us to answer ourselves.

We received 24 of the 25 message symbols – only one was missing. The fact that
it was part of the sender’s identity is significant, but there’s enough data to allow
us to intelligently re-create the missing data. 

In this instance, perhaps it doesn’t matter, as Humber sent the same DSC Call 
THREE times – and only the second transmission had the error that we’ve just 
worked through… the other two transmissions confirm that our calculations were 
correct though!

08:43:50> 2187.5: 102 102 005 050 001 004 006 108 000 023 020 000 070 109 126 001 
092 050 001 092 050 127 023 127 127 

           FORMAT: AREA CALL

              CAT: SAFETY

               TO: 55°N=>04° 001°E=>06°

             FROM: COAST 002320007,ENG,Humber Radio

              TC1: J3E TP

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 41



              TC2: NO INFO

             FREQ: 01925.0/01925.0KHz

              POS: --

              EOS: EOS

             cECC: 23 OK

08:43:59> 2187.5: 102 102 005 050 001 004 006 108 000 023 020 000 ~~~ 109 126 001 
092 050 001 092 050 127 023 127 127 

           FORMAT: AREA CALL

              CAT: SAFETY

               TO: 55°N=>04° 001°E=>06°

             FROM: COAST 00232000~, UNID

              TC1: J3E TP

              TC2: NO INFO

             FREQ: 01925.0/01925.0KHz

              POS: --

              EOS: EOS

             cECC: 81 ERROR

 

08:44:10> 2187.5: 102 102 005 050 001 004 006 108 000 023 020 000 070 109 126 001 
092 050 001 092 050 127 023 127 127 

           FORMAT: AREA CALL

              CAT: SAFETY

               TO: 55°N=>04° 001°E=>06°

             FROM: COAST 002320007,ENG,Humber Radio

              TC1: J3E TP

              TC2: NO INFO

             FREQ: 01925.0/01925.0KHz

              POS: --

              EOS: EOS

             cECC: 23 OK

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 42



The missing ZERO conundrum…

20:16:18> 120 120 027 010 002 045 060 108 000 027 011 ~~~ 000 118 126
126 126 126 126 126 126 122 116 122 ~~~
       FORMAT: SELECTIVE CALL
          CAT: SAFETY
           TO: SHIP  271002456
         FROM: COAST 002711~~0, UNID
          TC1: TEST
          TC2: NO INFO
         FREQ: --
         POS : --
          EOS: ACK
         cECC: 116 OK

The ECC is “OK” but there’s a missing symbol from the Sender’s MMSI. How can 
that be?

120 027 010 002 045 060 108 000 027 011 ~~~ 000 118 126
126 126 126 126 126 126 122

Calculating the ECC from the symbols we’ve received :

120 = 1 1 1 1 0 0 0 
027 = 0 0 1 1 0 1 1
010 = 0 0 0 1 0 1 0
002 = 0 0 0 0 0 1 0
045 = 0 1 0 1 1 0 1
060 = 0 1 1 1 1 0 0
108 = 1 1 0 1 1 0 0
000 = 0 0 0 0 0 0 0
027 = 0 0 1 1 0 1 1
011 = 0 0 0 1 0 1 1
~~~ 
000 = 0 0 0 0 0 0 0
118 = 1 1 1 0 1 1 0
126 = 1 1 1 1 1 1 0
126 = 1 1 1 1 1 1 0
126 = 1 1 1 1 1 1 0
126 = 1 1 1 1 1 1 0
126 = 1 1 1 1 1 1 0
126 = 1 1 1 1 1 1 0
126 = 1 1 1 1 1 1 0
122 = 1 1 1 1 0 1 0
 = = = = = = =
ECC = 1 1 1 0 1 0 0 = 116

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 43

This matches the received ECC value in the message - so our message seems to
have no errors, but what’s the MMSI of the Coast Station? We’re missing
some data yet and the ECC is “OK”!

The missing symbol (XXX) must be a number such that if it was included in the
list of numbers in the ECC XOR calculation it would give the same answer 116.

If we take the answer we’ve got, so far (116), which was obtained by calculating
the ECC and ignoring the missing number, and then we XOR this answer with the
true value (XXX) of the missing number, we will arrive at the TRUE ECC. We
believe this TRUE ECC to be 116 since that’s the value we’ve taken from the
message itself. What number, XORed with 116 gives an answer of 116?

116 XOR XXX = 116

116 = 1 1 1 0 1 0 0
XXX = a b c d e f g
 = = = = = = =
116 = 1 1 1 0 1 0 0

A B XO
R

0 0 0
1 0 1
0 1 1
1 1 0

1 xor a = 1 a must be 0

1 xor b = 1 b must be 0

1 xor c = 1 c must be 0

0 xor d = 0 d must be 0

1 xor e = 1 e must be 0

0 xor f = 0 f must be 0

0 xor g = 0 g must be 0

The missing symbol (XXX) must have been binary 0000000

We can do our “XOR manipulation” from the last example, where we discovered
that

A xor B = C

B xor C = A

A xor C = B

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 44

So can we just calculate the missing number, and not mess about with the “ones
and noughts”?

116 XOR XXX = 116 can be re-written 116 XOR 116 = XXX and our calculator
tells us that 116 XOR 116 = 0

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 45

Assuming NO OTHER ERRORS……
The missing symbol must have been 000, and had it been received correctly the
overall ECC calculation would have given the same result…. 116

The missing MMSI is: 000 027 011 0 00 000

002711000 is Istanbul Radio

The message should look like:

20:16:18> 120 120 027 010 002 045 060 108 000 027 011 000 000 118 126
126 126 126 126 126 126 122 116 122 ~~~
 FORMAT: SELECTIVE CALL
 CAT: SAFETY
 TO: SHIP 271002456
 FROM: COAST 002711000,TUR,Istanbul Radio
 TC1: TEST
 TC2: NO INFO
 FREQ: --
 POS : --
 EOS: ACK
 cECC: 116 OK

Do we log this as a successful catch of Istanbul?

What we’ve found is that if we have a single missing symbol, yet the received
ECC matches the calculated ECC, then the missing symbol must have been
“000”. Zero does not change the cumulative XOR result.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 46

One last DX Debunking

Is this reception really Honolulu on 2MHz?
RX:2187.5

SYMB: 120 120 031 094 068 000 000 108 000 036 069 099 034 118 ~~~ 126 126
126 126 126 126 122 049 ~~~ ~~~

FMT:SEL

CAT:SAF

TO:SHIP,319468000

FR:COAST,003669993,HWA,CAMSPAC Honolulu

TC1:TEST

TC2:UNK/ERR

FREQ:--

POS: --

EOS: ACK

ECC: 61 ERR

Take the raw message and highlight the sections as usual

120 031 094 068 000 000 108 000 036 069 099 034 118 ~~~ 126
126 126 126 126 126 122 049

Replace the missing symbol and re-test the ECC
My first thought – the ECC fails but is this simply due to the “missing
Telecommand 2” symbol – and shouldn’t it be 126?

Will this substitution of 126 fix the ECC and can we then claim a really good DX
catch?

Let’s try… The cECC using all our received symbols (i.e. except the missing TC2
symbol) is 61.

The new cECC, including the extra 126 is easy enough to work out :

61 xor 126 = 67

That still doesn’t equal the received ECC of 49. So, there’s another error!

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 47

We’ll keep the new Telecommand 2 value of 126, because that “just seems
right”.

Find the error
Let’s look at the MMSI symbols which we’ve received, which pointed us initially to
the MMSI for Honolulu 003669993 – the rare 2MHz DX. You have to be
suspicious.

000 036 069 099 034

We know how to convert between MMSI and the DSC symbols and vice versa –
it’s about “padding with zeros”.

000 036 069 099 034

The padding zeros have been highlighted – but wait!

One of them is a 4 – that can’t be right.

The DSC transmitter takes a 9-digit MMSI and puts those digits into 5 DSC
symbols – and the last symbol ALWAYS has a zero at the end, ALWAYS,
ALWAYS!

The last symbol is WRONG – and it may not have been Honolulu after all. (Who’d
have guessed?)

A dead end
But wait (again) – what if the last symbol was really been 030. Then it still could
have been Honolulu.

000 036 069 099 030

Recalculate the ECC but use 030 instead of 034 – this gives us 127! (Go on, try
it yourself…)

Not the 47 we wanted.

Back on track
Okay – we’ll discard the last MMSI symbol (034) completely, and calculate an
ECC without it….

New cECC (of all symbols except the now discarded 034) = 97

What missing symbol (the final missing MMSI symbol) would XOR with 97(the
cumulative XOR of all the symbols we believe to be correct) and arrive at the all
important (true?) ECC of 49?

97 xor XXX = 49

we know from previous examples that this can be written as

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 48

97 xor 49 = XXX

our calculator tells us that

97 xor 49 = 80

The missing symbol from the end of the Coast Station MMSI seems to be 080
(this ends in a zero too, which is good!)

The MMSI is therefore 000 036 069 099 080

000 036 069 099 080

003669998 is “COMMSTA New Orleans” which is a much more likely 2MHz
catch, than Honolulu, here in the UK.

The solution to our “two error” problem
Repairing all the damage, the full message should have been:

120 120 031 094 068 000 000 108 000 036 069 099 080 118 126 126
126 126 126 126 126 122 049

FMT:SEL

CAT:SAF

TO:SHIP,319468000

FR:COAST,003669998,USA,COMMSTA New Orleans

TC1:TEST

TC2:No Info

FREQ:--

POS: --

EOS: ACK

ECC: 49 OK

Confidence check….
The vessel in the message 319468000 is the “Stolt Confidence” an Oil Tanker,
and at the time of the message she was in the Gulf of Mexico, off shore from
Houston, and very close to New Orleans. It all seems to point to a positive ID of
New Orleans, and not Honolulu.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 49

How did YaDD get the last symbol of the MMSI wrong?
We initially received the last symbol of the MMSI as 034, but now we are
confident the real symbol was 080.

Is this a “false positive parity” error?
If the “real” symbol was 080 – then what was the 10-bit word that the transmitter
sent?

Decimal 80 = Binary 1010000

Reverse the order : 0000101

Count the zeros 5

Parity bits 5 = binary 101

The 10-bit word representing a symbol of 80 : 0000101101

YaDD decoded the symbol as 034- so what was the 10-bit word that must have
been presented, which passed the parity test?

Decimal 34 = Binary 0100010

Reverse the order : 0100010

Count the zeros 5

Parity bits 5 = binary 101

The 10-bit word representing a symbol of 34 : 0100010101

Compare the two 10-bit words:

80 (the real symbol): 0000101101

34 (the false positive?): 0100010101

There are FOUR bit errors in the “wrong” value of 34comparing it with the
“right” value of 80. This is surprising, but goes to show how badly corrupted a
10-bit word can become, and still end up with a valid “parity test”.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 50

Logging and Reporting corrupted messages

What constitutes an acceptable “repair”?

Here is a basic sequence that I would recommend, when faced with a message
that has some form of error. The error might be that the ECC check has failed or
that there are missing symbols, even when the ECC check is “OK”.

If the ECC has failed (the most common problem) can we see an obvious reason?

1) Missing symbol(s)?

In the case of missing symbol(s)

a) Missing symbol from a predictable element of the message?

b) Missing symbol from the MMSI?

c) Missing ECC symbol?

2) Obvious error in a symbol that has a predictable value?

An error in a “predictable” symbol would be something like

a) A “null data” symbol 126 in error

b) A Telecommand One or Telecommand Two symbol in error.

3) Error in a symbol that is not immediately obvious

a) MMSI symbol in error

b) Frequency or Position symbols in error

c) ECC symbol in error.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 51

The easiest to handle are

 1) “missing 126” symbols:

TIME: 2013-11-25 09:33:58 FREQ: 2187.5

SYMB: 120 120 025 078 025 000 000 108 000 025 070 050 000 118 126 ~~~ 126
126 126 126 126 122 069 122 122

 FMT: SEL

 CAT: SAF

 TO: SHIP,257825000

FROM: COAST,002570500,NOR,Floroe Radio

 TC1: TEST

 TC2: NO INFO

FREQ: --

 POS: --

 EOS: ACK

cECC: 59 ERR

Replacing the ~~~ with 126 and recalculate the cECC (simply the original cECC
of 59 xor’d with the replacement “126”)

59 xor 126 = 69

The message is now valid and only one minor error to correct.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 52

2) “missing Telecommand One or Two”

TIME: 2013-11-25 02:08:23 FREQ: 2187.5

SYMB: 120 120 000 021 091 000 000 108 025 077 086 000 000 ~~~ 126 126 126
126 126 126 126 117 037 117 117

 FMT: SEL

 CAT: SAF

 TO: COAST,002191000,DNK,Lyngby Radio

FROM: SHIP,257786000

 TC1: UNK/ERR

 TC2: NO INFO

FREQ: --

 POS: --

 EOS: REQ

cECC: 83 ERR

Replace the missing Telecommand One with the expected “118” (meaning
“TEST”) and recalculate the cECC.

83 xor 118 = 37

The message is now valid, and again only one minor error to correct.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 53

3)One Missing symbol – perhaps from the MMSI?
Potentially a bit more risky, but a single missing symbol, assuming no other
errors, can be calculated

TIME: 2013-11-25 08:10:42 FREQ: 2187.5

SYMB: 120 120 000 025 070 080 000 108 000 ~~~ 070 080 000 118 126 126 126
126 126 126 126 122 102 122 122

 FMT: SEL

 CAT: SAF

 TO: COAST,002570800,NOR,Vardo Radio

FROM: COAST,00~~70800, UNID

 TC1: TEST

 TC2: NO INFO

FREQ: --

 POS: --

 EOS: ACK

cECC: 127 ERR

Calculate a missing value by using the received ECC and the cECC symbols:

127 xor 102 = XXX

127 xor 102 = 25

Replace the missing MMSI symbol with “025” and we now have:

000 025 070 080 000

002570800 is Vardo Radio.

Since this is a test call ACK from Vardo, addressed to Vardo, I think it’s fair to
assume we can accept our correction.

Copyright © 08/05/2016 John Pumford-Green GM4SLV Page 54

	Part One : DSC Messages
	The general picture
	The MMSI – Maritime Mobile Service Identity
	Example MMSIs

	DSC messages
	The general format of a DSC Message
	Symbols
	Addresses – MMSI numbers
	Format
	Category
	Telecommands
	The End of Sequence symbol

	Building a message – a worked example.
	The general format of a DSC Message
	An “Individual, Safety, Test” Message from a vessel
	The Error Check Character
	How XOR detects errors
	Suppose there are TWO errors
	Fly in the ointment - aside

	Back to the fray
	Method 1
	Method 2

	The basic “RAW” message

	More error detection / prevention
	Symbols and Parity and the “10 to 7-bit Parity Test”
	Passing a Parity Check
	Failing a Parity Check
	Passing a Parity Check, even when there is an error
	Time Diversity Interleaving : The DX and RX copies
	The Message – almost ready for transmission
	Dotting and Phasing
	The full time-interleaved message is now (DX and RX)

	Modulation and transmission characteristics

	Recap - Error detection and methods to improve reliability
	Part Two : Analysis of received messages
	An error free example – A Test Call
	Identify the key parts of the message
	We have the deciphered meaning of the message
	YaDD logs the message as
	Checking the message Error Check Character manually

	Another error free example – not a “Test” call
	What about the ECC?
	YaDD logs the message:

	Analyzing “Faulty Messages”
	One missing symbol
	YaDD Logs the message
	Guess the missing symbol and test the solution
	A repaired message – now error free

	An ECC Error, but no missing symbols
	Here’s the proof:

	One missing symbol – calculating the likely value
	Using the ECC XOR calculation to find the missing value
	Aside – manipulating XOR calculations
	So, we now have a complete set of symbols:
	Would we dare to claim a successful reception of Humber Coastguard Radio 002320007 ?

	The missing ZERO conundrum…
	Assuming NO OTHER ERRORS……

	One last DX Debunking
	Is this reception really Honolulu on 2MHz?
	Replace the missing symbol and re-test the ECC
	Find the error
	A dead end
	Back on track

	The solution to our “two error” problem
	Confidence check….
	How did YaDD get the last symbol of the MMSI wrong?
	Is this a “false positive parity” error?

	Logging and Reporting corrupted messages
	What constitutes an acceptable “repair”?
	1) “missing 126” symbols:
	2) “missing Telecommand One or Two”
	3)One Missing symbol – perhaps from the MMSI?

